These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
660 related articles for article (PubMed ID: 22011002)
1. The modification of indium tin oxide with phosphonic acids: mechanism of binding, tuning of surface properties, and potential for use in organic electronic applications. Hotchkiss PJ; Jones SC; Paniagua SA; Sharma A; Kippelen B; Armstrong NR; Marder SR Acc Chem Res; 2012 Mar; 45(3):337-46. PubMed ID: 22011002 [TBL] [Abstract][Full Text] [Related]
2. Oxide contacts in organic photovoltaics: characterization and control of near-surface composition in indium-tin oxide (ITO) electrodes. Armstrong NR; Veneman PA; Ratcliff E; Placencia D; Brumbach M Acc Chem Res; 2009 Nov; 42(11):1748-57. PubMed ID: 19728725 [TBL] [Abstract][Full Text] [Related]
3. Electrical property heterogeneity at transparent conductive oxide/organic semiconductor interfaces: mapping contact ohmicity using conducting-tip atomic force microscopy. MacDonald GA; Veneman PA; Placencia D; Armstrong NR ACS Nano; 2012 Nov; 6(11):9623-36. PubMed ID: 23030667 [TBL] [Abstract][Full Text] [Related]
4. Electrochemical modification of indium tin oxide using di(4-nitrophenyl) iodonium tetrafluoroborate. Charlton MR; Suhr KJ; Holliday BJ; Stevenson KJ Langmuir; 2015 Jan; 31(2):695-702. PubMed ID: 25526354 [TBL] [Abstract][Full Text] [Related]
5. [Surface and interface analysis for copper phthalocyanine (CuPc) and indium-tin-oxide (ITO) using X-ray photoelectron spectroscopy (XPS)]. Gao ZY; Zhang X; Zheng DS; He XY; Zhang FJ Guang Pu Xue Yu Guang Pu Fen Xi; 2004 Apr; 24(4):502-6. PubMed ID: 15766169 [TBL] [Abstract][Full Text] [Related]
6. Phosphonic Acids for Interfacial Engineering of Transparent Conductive Oxides. Paniagua SA; Giordano AJ; Smith OL; Barlow S; Li H; Armstrong NR; Pemberton JE; Brédas JL; Ginger D; Marder SR Chem Rev; 2016 Jun; 116(12):7117-58. PubMed ID: 27227316 [TBL] [Abstract][Full Text] [Related]
7. Chlorinated indium tin oxide electrodes with high work function for organic device compatibility. Helander MG; Wang ZB; Qiu J; Greiner MT; Puzzo DP; Liu ZW; Lu ZH Science; 2011 May; 332(6032):944-7. PubMed ID: 21493822 [TBL] [Abstract][Full Text] [Related]
8. Effects of ITO surface modification using self-assembly molecules on the characteristics of OLEDs. Kim DH; Chung CM; Park JW; Oh SY Ultramicroscopy; 2008 Sep; 108(10):1233-6. PubMed ID: 18550287 [TBL] [Abstract][Full Text] [Related]
9. Systematic investigation of surface modification by organosiloxane self-assembled on indium-tin oxide for improved hole injection in organic light-emitting diodes. Zhao Y; Duan L; Zhang D; Dong G; Qiao J; Wang L; Qiu Y ACS Appl Mater Interfaces; 2014 Mar; 6(6):4570-7. PubMed ID: 24593887 [TBL] [Abstract][Full Text] [Related]
10. Small molecule chemisorption on indium-tin oxide surfaces: enhancing probe molecule electron-transfer rates and the performance of organic light-emitting diodes. Carter C; Brumbach M; Donley C; Hreha RD; Marder SR; Domercq B; Yoo S; Kippelen B; Armstrong NR J Phys Chem B; 2006 Dec; 110(50):25191-202. PubMed ID: 17165963 [TBL] [Abstract][Full Text] [Related]
11. Electronic and chemical properties of tin-doped indium oxide (ITO) surfaces and ITO/ZnPc interfaces studied in-situ by photoelectron spectroscopy. Gassenbauer Y; Klein A J Phys Chem B; 2006 Mar; 110(10):4793-801. PubMed ID: 16526716 [TBL] [Abstract][Full Text] [Related]
12. Photochemical grafting and patterning of organic monolayers on indium tin oxide substrates. Li Y; Zuilhof H Langmuir; 2012 Mar; 28(12):5350-9. PubMed ID: 22324432 [TBL] [Abstract][Full Text] [Related]
13. Finely tailored performance of inverted organic photovoltaics through layer-by-layer interfacial engineering. Chen Q; Worfolk BJ; Hauger TC; Al-Atar U; Harris KD; Buriak JM ACS Appl Mater Interfaces; 2011 Oct; 3(10):3962-70. PubMed ID: 21950539 [TBL] [Abstract][Full Text] [Related]
14. Axially Bound Ruthenium Phthalocyanine Monolayers on Indium Tin Oxide: Structure, Energetics, and Charge Transfer Properties. Ehamparam R; Oquendo LE; Liao MW; Brynnel AK; Ou KL; Armstrong NR; McGrath DV; Saavedra SS ACS Appl Mater Interfaces; 2017 Aug; 9(34):29213-29223. PubMed ID: 28795562 [TBL] [Abstract][Full Text] [Related]
15. Surface composition and electrical and electrochemical properties of freshly deposited and acid-etched indium tin oxide electrodes. Brumbach M; Veneman PA; Marrikar FS; Schulmeyer T; Simmonds A; Xia W; Lee P; Armstrong NR Langmuir; 2007 Oct; 23(22):11089-99. PubMed ID: 17880253 [TBL] [Abstract][Full Text] [Related]
16. Structural investigations of self-assembled monolayers for organic electronics: results from X-ray reflectivity. Khassanov A; Steinrück HG; Schmaltz T; Magerl A; Halik M Acc Chem Res; 2015 Jul; 48(7):1901-8. PubMed ID: 26072927 [TBL] [Abstract][Full Text] [Related]
17. Effect of oxygen plasma treatment on the surface properties of tin-doped indium oxide substrates for polymer LEDs. You ZZ; Dong JY J Colloid Interface Sci; 2006 Aug; 300(2):697-703. PubMed ID: 16643943 [TBL] [Abstract][Full Text] [Related]
18. A novel surface modification scheme for ITO nanocrystals by acetylene: a combined experimental and DFT study. Chen ZX; Xi YJ; Huang L; Li WC; Li R; Xu GQ; Cheng HS Phys Chem Chem Phys; 2015 Oct; 17(40):26740-4. PubMed ID: 26395227 [TBL] [Abstract][Full Text] [Related]
19. Surface modification and characterization of indium-tin oxide for organic light-emitting devices. Zhong ZY; Jiang YD J Colloid Interface Sci; 2006 Oct; 302(2):613-9. PubMed ID: 16890950 [TBL] [Abstract][Full Text] [Related]
20. Preparation and characterization of dense films of poly(amidoamine) dendrimers on indium tin oxide. Schlapak R; Armitage D; Saucedo-Zeni N; Latini G; Gruber HJ; Mesquida P; Samotskaya Y; Hohage M; Cacialli F; Howorka S Langmuir; 2007 Aug; 23(17):8916-24. PubMed ID: 17636991 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]