BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

321 related articles for article (PubMed ID: 22011047)

  • 1. Aqueous electrochemistry of poly(vinylanthraquinone) for anode-active materials in high-density and rechargeable polymer/air batteries.
    Choi W; Harada D; Oyaizu K; Nishide H
    J Am Chem Soc; 2011 Dec; 133(49):19839-43. PubMed ID: 22011047
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polyviologen hydrogel with high-rate capability for anodes toward an aqueous electrolyte-type and organic-based rechargeable device.
    Sano N; Tomita W; Hara S; Min CM; Lee JS; Oyaizu K; Nishide H
    ACS Appl Mater Interfaces; 2013 Feb; 5(4):1355-61. PubMed ID: 23347552
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anthraquinone-Based Polymer as Cathode in Rechargeable Magnesium Batteries.
    Bitenc J; Pirnat K; Bančič T; Gaberšček M; Genorio B; Randon-Vitanova A; Dominko R
    ChemSusChem; 2015 Dec; 8(24):4128-32. PubMed ID: 26610185
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts.
    Cheng F; Chen J
    Chem Soc Rev; 2012 Mar; 41(6):2172-92. PubMed ID: 22254234
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Passivation Layer and Cathodic Redox Reactions in Sodium-Ion Batteries Probed by HAXPES.
    Doubaji S; Philippe B; Saadoune I; Gorgoi M; Gustafsson T; Solhy A; Valvo M; Rensmo H; Edström K
    ChemSusChem; 2016 Jan; 9(1):97-108. PubMed ID: 26692568
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A lithium-air fuel cell using copper to catalyze oxygen-reduction based on copper-corrosion mechanism.
    Wang Y; Zhou H
    Chem Commun (Camb); 2010 Sep; 46(34):6305-7. PubMed ID: 20668776
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conducting Redox Polymer as a Robust Organic Electrode-Active Material in Acidic Aqueous Electrolyte towards Polymer-Air Secondary Batteries.
    Oka K; Strietzel C; Emanuelsson R; Nishide H; Oyaizu K; Strømme M; Sjödin M
    ChemSusChem; 2020 May; 13(9):2280-2285. PubMed ID: 32267605
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Limitation of discharge capacity and mechanisms of air-electrode deactivation in silicon-air batteries.
    Jakes P; Cohn G; Ein-Eli Y; Scheiba F; Ehrenberg H; Eichel RA
    ChemSusChem; 2012 Nov; 5(11):2278-85. PubMed ID: 23033259
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Doped lanthanum nickelates with a layered perovskite structure as bifunctional cathode catalysts for rechargeable metal-air batteries.
    Jung KN; Jung JH; Im WB; Yoon S; Shin KH; Lee JW
    ACS Appl Mater Interfaces; 2013 Oct; 5(20):9902-7. PubMed ID: 24053465
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A cross-linked soft matter polymer electrolyte for rechargeable lithium-ion batteries.
    Patel M; Patel MU; Bhattacharyya AJ
    ChemSusChem; 2010 Dec; 3(12):1371-4. PubMed ID: 21031497
    [No Abstract]   [Full Text] [Related]  

  • 12. A Hydrogen-Evolving Hybrid-Electrolyte Battery with Electrochemical/Photoelectrochemical Charging from Water Oxidation.
    Jin Z; Li P; Xiao D
    ChemSusChem; 2017 Feb; 10(3):483-488. PubMed ID: 27863111
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energetic aqueous rechargeable sodium-ion battery based on Na2 CuFe(CN)6 -NaTi2 (PO4 )3 intercalation chemistry.
    Wu XY; Sun MY; Shen YF; Qian JF; Cao YL; Ai XP; Yang HX
    ChemSusChem; 2014 Feb; 7(2):407-11. PubMed ID: 24464957
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Environmentally-friendly aqueous Li (or Na)-ion battery with fast electrode kinetics and super-long life.
    Dong X; Chen L; Liu J; Haller S; Wang Y; Xia Y
    Sci Adv; 2016 Jan; 2(1):e1501038. PubMed ID: 26844298
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A biofuel cell with electrochemically switchable and tunable power output.
    Katz E; Willner I
    J Am Chem Soc; 2003 Jun; 125(22):6803-13. PubMed ID: 12769592
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of membrane electrode assembly water content on the performance of a polymer electrolyte membrane fuel cell as investigated by 1H NMR microscopy.
    Feindel KW; Bergens SH; Wasylishen RE
    Phys Chem Chem Phys; 2007 Apr; 9(15):1850-7. PubMed ID: 17415498
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Remarkable impact of water on the discharge performance of a silicon-air battery.
    Cohn G; Macdonald DD; Ein-Eli Y
    ChemSusChem; 2011 Aug; 4(8):1124-9. PubMed ID: 21766461
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioinspired Catechol-Grafting PEDOT Cathode for an All-Polymer Aqueous Proton Battery with High Voltage and Outstanding Rate Capacity.
    Zhu M; Zhao L; Ran Q; Zhang Y; Peng R; Lu G; Jia X; Chao D; Wang C
    Adv Sci (Weinh); 2022 Feb; 9(4):e2103896. PubMed ID: 34914857
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-speed carbon nanotube actuators based on an oxidation/reduction reaction.
    Mukai K; Asaka K; Hata K; Otero TF; Oike H
    Chemistry; 2011 Sep; 17(39):10965-71. PubMed ID: 21826748
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.