BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 22011139)

  • 1. Molecular evolution of candidate sour taste receptor gene PKD1L3 in mammals.
    Chen D; Li P; Guo W; Ye F; Wu J; Wei D; Guo Z; Ye C
    Genome; 2011 Nov; 54(11):890-7. PubMed ID: 22011139
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transient receptor potential family members PKD1L3 and PKD2L1 form a candidate sour taste receptor.
    Ishimaru Y; Inada H; Kubota M; Zhuang H; Tominaga M; Matsunami H
    Proc Natl Acad Sci U S A; 2006 Aug; 103(33):12569-74. PubMed ID: 16891422
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activation of polycystic kidney disease-2-like 1 (PKD2L1)-PKD1L3 complex by acid in mouse taste cells.
    Kawaguchi H; Yamanaka A; Uchida K; Shibasaki K; Sokabe T; Maruyama Y; Yanagawa Y; Murakami S; Tominaga M
    J Biol Chem; 2010 Jun; 285(23):17277-81. PubMed ID: 20406802
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction between PKD1L3 and PKD2L1 through their transmembrane domains is required for localization of PKD2L1 at taste pores in taste cells of circumvallate and foliate papillae.
    Ishimaru Y; Katano Y; Yamamoto K; Akiba M; Misaka T; Roberts RW; Asakura T; Matsunami H; Abe K
    FASEB J; 2010 Oct; 24(10):4058-67. PubMed ID: 20538909
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two members of the TRPP family of ion channels, Pkd1l3 and Pkd2l1, are co-expressed in a subset of taste receptor cells.
    LopezJimenez ND; Cavenagh MM; Sainz E; Cruz-Ithier MA; Battey JF; Sullivan SL
    J Neurochem; 2006 Jul; 98(1):68-77. PubMed ID: 16805797
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A large increase of sour taste receptor cells in Skn-1-deficient mice does not alter the number of their sour taste signal-transmitting gustatory neurons.
    Maeda N; Narukawa M; Ishimaru Y; Yamamoto K; Misaka T; Abe K
    Neurosci Lett; 2017 May; 648():53-58. PubMed ID: 28359935
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A PKD1L3 splice variant in taste buds is not cleaved at the G protein-coupled receptor proteolytic site.
    Kashyap P; Ng C; Wang Z; Li B; Arif Pavel M; Martin H; Yu Y
    Biochem Biophys Res Commun; 2019 May; 512(4):812-818. PubMed ID: 30928102
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sour taste responses in mice lacking PKD channels.
    Horio N; Yoshida R; Yasumatsu K; Yanagawa Y; Ishimaru Y; Matsunami H; Ninomiya Y
    PLoS One; 2011; 6(5):e20007. PubMed ID: 21625513
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A proton current drives action potentials in genetically identified sour taste cells.
    Chang RB; Waters H; Liman ER
    Proc Natl Acad Sci U S A; 2010 Dec; 107(51):22320-5. PubMed ID: 21098668
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Off-response property of an acid-activated cation channel complex PKD1L3-PKD2L1.
    Inada H; Kawabata F; Ishimaru Y; Fushiki T; Matsunami H; Tominaga M
    EMBO Rep; 2008 Jul; 9(7):690-7. PubMed ID: 18535624
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular evolution of PKD2 gene family in mammals.
    Ye C; Sun H; Guo W; Wei Y; Zhou Q
    Genetica; 2009 Sep; 137(1):77-86. PubMed ID: 19184643
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acetic acid activates PKD1L3-PKD2L1 channel--a candidate sour taste receptor.
    Ishii S; Misaka T; Kishi M; Kaga T; Ishimaru Y; Abe K
    Biochem Biophys Res Commun; 2009 Jul; 385(3):346-50. PubMed ID: 19464260
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The response of PKD1L3/PKD2L1 to acid stimuli is inhibited by capsaicin and its pungent analogs.
    Ishii S; Kurokawa A; Kishi M; Yamagami K; Okada S; Ishimaru Y; Misaka T
    FEBS J; 2012 May; 279(10):1857-70. PubMed ID: 22420714
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acid-induced off-response of PKD2L1 channel in Xenopus oocytes and its regulation by Ca(2.).
    Hussein S; Zheng W; Dyte C; Wang Q; Yang J; Zhang F; Tang J; Cao Y; Chen XZ
    Sci Rep; 2015 Oct; 5():15752. PubMed ID: 26502994
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A proton current associated with sour taste: distribution and functional properties.
    Bushman JD; Ye W; Liman ER
    FASEB J; 2015 Jul; 29(7):3014-26. PubMed ID: 25857556
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The single pore residue Asp523 in PKD2L1 determines Ca2+ permeation of the PKD1L3/PKD2L1 complex.
    Fujimoto C; Ishimaru Y; Katano Y; Misaka T; Yamasoba T; Asakura T; Abe K
    Biochem Biophys Res Commun; 2011 Jan; 404(4):946-51. PubMed ID: 21185261
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Frequent expansions of the bitter taste receptor gene repertoire during evolution of mammals in the Euarchontoglires clade.
    Hayakawa T; Suzuki-Hashido N; Matsui A; Go Y
    Mol Biol Evol; 2014 Aug; 31(8):2018-31. PubMed ID: 24758778
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of the structural motif responsible for trimeric assembly of the C-terminal regulatory domains of polycystin channels PKD2L1 and PKD2.
    Molland KL; Narayanan A; Burgner JW; Yernool DA
    Biochem J; 2010 Jul; 429(1):171-83. PubMed ID: 20408813
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Behavioral analysis of Drosophila transformants expressing human taste receptor genes in the gustatory receptor neurons.
    Adachi R; Sasaki Y; Morita H; Komai M; Shirakawa H; Goto T; Furuyama A; Isono K
    J Neurogenet; 2012 Jun; 26(2):198-205. PubMed ID: 22794107
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly congruent molecular support for a diverse superordinal clade of endemic African mammals.
    Stanhope MJ; Madsen O; Waddell VG; Cleven GC; de Jong WW; Springer MS
    Mol Phylogenet Evol; 1998 Jun; 9(3):501-8. PubMed ID: 9667998
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.