BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 22011170)

  • 1. DART: Denoising Algorithm based on Relevance network Topology improves molecular pathway activity inference.
    Jiao Y; Lawler K; Patel GS; Purushotham A; Jones AF; Grigoriadis A; Tutt A; Ng T; Teschendorff AE
    BMC Bioinformatics; 2011 Oct; 12():403. PubMed ID: 22011170
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Incorporating prior biological knowledge for network-based differential gene expression analysis using differentially weighted graphical LASSO.
    Zuo Y; Cui Y; Yu G; Li R; Ressom HW
    BMC Bioinformatics; 2017 Feb; 18(1):99. PubMed ID: 28187708
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increased entropy of signal transduction in the cancer metastasis phenotype.
    Teschendorff AE; Severini S
    BMC Syst Biol; 2010 Jul; 4():104. PubMed ID: 20673354
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Incorporating topological information for predicting robust cancer subnetwork markers in human protein-protein interaction network.
    Khunlertgit N; Yoon BJ
    BMC Bioinformatics; 2016 Oct; 17(Suppl 13):351. PubMed ID: 27766944
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved prognostic classification of breast cancer defined by antagonistic activation patterns of immune response pathway modules.
    Teschendorff AE; Gomez S; Arenas A; El-Ashry D; Schmidt M; Gehrmann M; Caldas C
    BMC Cancer; 2010 Nov; 10():604. PubMed ID: 21050467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. BMRF-MI: integrative identification of protein interaction network by modeling the gene dependency.
    Shi X; Wang X; Shajahan A; Hilakivi-Clarke L; Clarke R; Xuan J
    BMC Genomics; 2015; 16 Suppl 7(Suppl 7):S10. PubMed ID: 26099273
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Topologically inferring pathway activity for precise survival outcome prediction: breast cancer as a case.
    Liu W; Wang W; Tian G; Xie W; Lei L; Liu J; Huang W; Xu L; Li E
    Mol Biosyst; 2017 Feb; 13(3):537-548. PubMed ID: 28098303
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MICRAT: a novel algorithm for inferring gene regulatory networks using time series gene expression data.
    Yang B; Xu Y; Maxwell A; Koh W; Gong P; Zhang C
    BMC Syst Biol; 2018 Dec; 12(Suppl 7):115. PubMed ID: 30547796
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Discovery of lung cancer pathways using reverse phase protein microarray and prior-knowledge based Bayesian networks.
    Kim DC; Yang CR; Wang X; Zhang B; Wu X; Gao J
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5543-6. PubMed ID: 22255594
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Creating and analyzing pathway and protein interaction compendia for modelling signal transduction networks.
    Kirouac DC; Saez-Rodriguez J; Swantek J; Burke JM; Lauffenburger DA; Sorger PK
    BMC Syst Biol; 2012 May; 6():29. PubMed ID: 22548703
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inferring pathway crosstalk networks using gene set co-expression signatures.
    Wang T; Gu J; Yuan J; Tao R; Li Y; Li S
    Mol Biosyst; 2013 Jul; 9(7):1822-8. PubMed ID: 23591523
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrated molecular profiles of invasive breast tumors and ductal carcinoma in situ (DCIS) reveal differential vascular and interleukin signaling.
    Kristensen VN; Vaske CJ; Ursini-Siegel J; Van Loo P; Nordgard SH; Sachidanandam R; Sørlie T; Wärnberg F; Haakensen VD; Helland Å; Naume B; Perou CM; Haussler D; Troyanskaya OG; Børresen-Dale AL
    Proc Natl Acad Sci U S A; 2012 Feb; 109(8):2802-7. PubMed ID: 21908711
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sharing information to reconstruct patient-specific pathways in heterogeneous diseases.
    Gitter A; Braunstein A; Pagnani A; Baldassi C; Borgs C; Chayes J; Zecchina R; Fraenkel E
    Pac Symp Biocomput; 2014; ():39-50. PubMed ID: 24297532
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Network-based inference of cancer progression from microarray data.
    Park Y; Shackney S; Schwartz R
    IEEE/ACM Trans Comput Biol Bioinform; 2009; 6(2):200-12. PubMed ID: 19407345
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GSGS: a computational approach to reconstruct signaling pathway structures from gene sets.
    Acharya L; Judeh T; Duan Z; Rabbat M; Zhu D
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(2):438-50. PubMed ID: 22025758
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An empirical Bayes approach to inferring large-scale gene association networks.
    Schäfer J; Strimmer K
    Bioinformatics; 2005 Mar; 21(6):754-64. PubMed ID: 15479708
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GSNFS: Gene subnetwork biomarker identification of lung cancer expression data.
    Doungpan N; Engchuan W; Chan JH; Meechai A
    BMC Med Genomics; 2016 Dec; 9(Suppl 3):70. PubMed ID: 28117655
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plato's cave algorithm: inferring functional signaling networks from early gene expression shadows.
    Shimoni Y; Fink MY; Choi SG; Sealfon SC
    PLoS Comput Biol; 2010 Jun; 6(6):e1000828. PubMed ID: 20585619
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Network based consensus gene signatures for biomarker discovery in breast cancer.
    Fröhlich H
    PLoS One; 2011; 6(10):e25364. PubMed ID: 22046239
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient proximal gradient algorithm for inference of differential gene networks.
    Wang C; Gao F; Giannakis GB; D'Urso G; Cai X
    BMC Bioinformatics; 2019 May; 20(1):224. PubMed ID: 31046666
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.