These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 22011259)
41. Investigation of inversion polymorphisms in the human genome using principal components analysis. Ma J; Amos CI PLoS One; 2012; 7(7):e40224. PubMed ID: 22808122 [TBL] [Abstract][Full Text] [Related]
42. Molecular characterization of the pericentric inversion that causes differences between chimpanzee chromosome 19 and human chromosome 17. Kehrer-Sawatzki H; Schreiner B; Tänzer S; Platzer M; Müller S; Hameister H Am J Hum Genet; 2002 Aug; 71(2):375-88. PubMed ID: 12094327 [TBL] [Abstract][Full Text] [Related]
43. A local algorithm for DNA sequence alignment with inversions. Schöniger M; Waterman MS Bull Math Biol; 1992 Jul; 54(4):521-36. PubMed ID: 1591531 [TBL] [Abstract][Full Text] [Related]
44. The origin, global distribution, and functional impact of the human 8p23 inversion polymorphism. Salm MP; Horswell SD; Hutchison CE; Speedy HE; Yang X; Liang L; Schadt EE; Cookson WO; Wierzbicki AS; Naoumova RP; Shoulders CC Genome Res; 2012 Jun; 22(6):1144-53. PubMed ID: 22399572 [TBL] [Abstract][Full Text] [Related]
45. Complete chloroplast genome sequences from Korean ginseng (Panax schinseng Nees) and comparative analysis of sequence evolution among 17 vascular plants. Kim KJ; Lee HL DNA Res; 2004 Aug; 11(4):247-61. PubMed ID: 15500250 [TBL] [Abstract][Full Text] [Related]
46. Characteristics and possible mechanisms of formation of microinversions distinguishing human and chimpanzee genomes. Potapova NA; Kondrashov AS; Mirkin SM Sci Rep; 2022 Jan; 12(1):591. PubMed ID: 35022450 [TBL] [Abstract][Full Text] [Related]
47. A comprehensive analysis of chimpanzee (Pan troglodytes)-specific LINE-1 retrotransposons. Lee S; Tang W; Liang P; Han K Gene; 2019 Apr; 693():46-51. PubMed ID: 30690181 [TBL] [Abstract][Full Text] [Related]
48. Gene diversity of chimpanzee ABO blood group genes elucidated from exon 7 sequences. Sumiyama K; Kitano T; Noda R; Ferrell RE; Saitou N Gene; 2000 Dec; 259(1-2):75-9. PubMed ID: 11163964 [TBL] [Abstract][Full Text] [Related]
49. Compositional evolution of noncoding DNA in the human and chimpanzee genomes. Webster MT; Smith NG; Ellegren H Mol Biol Evol; 2003 Feb; 20(2):278-86. PubMed ID: 12598695 [TBL] [Abstract][Full Text] [Related]
50. The complete mitochondrial genome of the central chimpanzee, Pan troglodytes troglodytes. Liu B; Hu XD; Gao LZ Mitochondrial DNA A DNA Mapp Seq Anal; 2016 Jul; 27(4):2775-6. PubMed ID: 26190079 [TBL] [Abstract][Full Text] [Related]
51. Hairpins create minute inversions in non-coding regions of chloroplast DNA. Kelchner SA; Wendel JF Curr Genet; 1996 Aug; 30(3):259-62. PubMed ID: 8753656 [TBL] [Abstract][Full Text] [Related]
52. Construction and analysis of a human-chimpanzee comparative clone map. Fujiyama A; Watanabe H; Toyoda A; Taylor TD; Itoh T; Tsai SF; Park HS; Yaspo ML; Lehrach H; Chen Z; Fu G; Saitou N; Osoegawa K; de Jong PJ; Suto Y; Hattori M; Sakaki Y Science; 2002 Jan; 295(5552):131-4. PubMed ID: 11778049 [TBL] [Abstract][Full Text] [Related]
53. Analysis of chimpanzee history based on genome sequence alignments. Caswell JL; Mallick S; Richter DJ; Neubauer J; Schirmer C; Gnerre S; Reich D PLoS Genet; 2008 Apr; 4(4):e1000057. PubMed ID: 18421364 [TBL] [Abstract][Full Text] [Related]
54. Characterization of a novel class of interspersed LTR elements in primate genomes: structure, genomic distribution, and evolution. Liao D; Pavelitz T; Weiner AM J Mol Evol; 1998 Jun; 46(6):649-60. PubMed ID: 9608047 [TBL] [Abstract][Full Text] [Related]
55. Targeted chromosomal duplications and inversions in the human genome using zinc finger nucleases. Lee HJ; Kweon J; Kim E; Kim S; Kim JS Genome Res; 2012 Mar; 22(3):539-48. PubMed ID: 22183967 [TBL] [Abstract][Full Text] [Related]
57. Single-cell strand sequencing of a macaque genome reveals multiple nested inversions and breakpoint reuse during primate evolution. Maggiolini FAM; Sanders AD; Shew CJ; Sulovari A; Mao Y; Puig M; Catacchio CR; Dellino M; Palmisano D; Mercuri L; Bitonto M; Porubský D; Cáceres M; Eichler EE; Ventura M; Dennis MY; Korbel JO; Antonacci F Genome Res; 2020 Nov; 30(11):1680-1693. PubMed ID: 33093070 [TBL] [Abstract][Full Text] [Related]
58. Mapping of chimpanzee full-length cDNAs onto the human genome unveils large potential divergence of the transcriptome. Sakate R; Suto Y; Imanishi T; Tanoue T; Hida M; Hayasaka I; Kusuda J; Gojobori T; Hashimoto K; Hirai M Gene; 2007 Sep; 399(1):1-10. PubMed ID: 17574350 [TBL] [Abstract][Full Text] [Related]
59. The rate of chromosomal inversion fixation in plant genomes is highly variable. Hirabayashi K; Owens GL Evolution; 2023 Apr; 77(4):1117-1130. PubMed ID: 36790048 [TBL] [Abstract][Full Text] [Related]
60. Human-specific protein isoforms produced by novel splice sites in the human genome after the human-chimpanzee divergence. Kim DS; Hahn Y BMC Bioinformatics; 2012 Nov; 13():299. PubMed ID: 23148531 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]