These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 22011259)

  • 61. Evidence for symmetric chromosomal inversions around the replication origin in bacteria.
    Eisen JA; Heidelberg JF; White O; Salzberg SL
    Genome Biol; 2000; 1(6):RESEARCH0011. PubMed ID: 11178265
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Positive selection in the human genome inferred from human-chimp-mouse orthologous gene alignments.
    Clark AG; Glanowski S; Nielsen R; Thomas P; Kejariwal A; Todd MJ; Tanenbaum DM; Civello D; Lu F; Murphy B; Ferriera S; Wang G; Zheng X; White TJ; Sninsky JJ; Adams MD; Cargill M
    Cold Spring Harb Symp Quant Biol; 2003; 68():471-7. PubMed ID: 15338650
    [No Abstract]   [Full Text] [Related]  

  • 63. The difficulty of avoiding false positives in genome scans for natural selection.
    Mallick S; Gnerre S; Muller P; Reich D
    Genome Res; 2009 May; 19(5):922-33. PubMed ID: 19411606
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Tempo and mode of ERV-K evolution in human and chimpanzee genomes.
    Romano CM; Ramalho RF; Zanotto PM
    Arch Virol; 2006 Nov; 151(11):2215-28. PubMed ID: 16830071
    [TBL] [Abstract][Full Text] [Related]  

  • 65. [Comparative studies on human and chimpanzee genomes].
    Yoko K; Atsushi T; Hideki N; Asao F
    Tanpakushitsu Kakusan Koso; 2005 Dec; 50(16 Suppl):2072-7. PubMed ID: 16411432
    [No Abstract]   [Full Text] [Related]  

  • 66. [A comparative analysis of regulatory regions of the transthyretin gene in the mouse, human, and chimpanzee genomes].
    Nadezhdin EV; Vinogradova TV; Sverdlov ED
    Bioorg Khim; 2004; 30(4):383-8. PubMed ID: 15469012
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Mutation Load in Sunflower Inversions Is Negatively Correlated with Inversion Heterozygosity.
    Huang K; Ostevik KL; Elphinstone C; Todesco M; Bercovich N; Owens GL; Rieseberg LH
    Mol Biol Evol; 2022 May; 39(5):. PubMed ID: 35535689
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Speciation and inversions: chimps and humans.
    Hey J
    Bioessays; 2003 Sep; 25(9):825-8. PubMed ID: 12938170
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Large tandem, higher order repeats and regularly dispersed repeat units contribute substantially to divergence between human and chimpanzee Y chromosomes.
    Paar V; Glunčić M; Basar I; Rosandić M; Paar P; Cvitković M
    J Mol Evol; 2011 Jan; 72(1):34-55. PubMed ID: 21103868
    [TBL] [Abstract][Full Text] [Related]  

  • 70. CGAT: a comparative genome analysis tool for visualizing alignments in the analysis of complex evolutionary changes between closely related genomes.
    Uchiyama I; Higuchi T; Kobayashi I
    BMC Bioinformatics; 2006 Oct; 7():472. PubMed ID: 17062155
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Y-Chromosome Structural Diversity in the Bonobo and Chimpanzee Lineages.
    Oetjens MT; Shen F; Emery SB; Zou Z; Kidd JM
    Genome Biol Evol; 2016 Aug; 8(7):2231-40. PubMed ID: 27358426
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Two chloroplast DNA inversions originated simultaneously during the early evolution of the sunflower family (Asteraceae).
    Kim KJ; Choi KS; Jansen RK
    Mol Biol Evol; 2005 Sep; 22(9):1783-92. PubMed ID: 15917497
    [TBL] [Abstract][Full Text] [Related]  

  • 73. The foldback-like transposon Galileo is involved in the generation of two different natural chromosomal inversions of Drosophila buzzatii.
    Casals F; Cáceres M; Ruiz A
    Mol Biol Evol; 2003 May; 20(5):674-85. PubMed ID: 12679549
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Detailed analysis of inversions predicted between two human genomes: errors, real polymorphisms, and their origin and population distribution.
    Vicente-Salvador D; Puig M; Gayà-Vidal M; Pacheco S; Giner-Delgado C; Noguera I; Izquierdo D; Martínez-Fundichely A; Ruiz-Herrera A; Estivill X; Aguado C; Lucas-Lledó JI; Cáceres M
    Hum Mol Genet; 2017 Feb; 26(3):567-581. PubMed ID: 28025331
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Hotspots of biased nucleotide substitutions in human genes.
    Berglund J; Pollard KS; Webster MT
    PLoS Biol; 2009 Jan; 7(1):e26. PubMed ID: 19175294
    [TBL] [Abstract][Full Text] [Related]  

  • 76. The chimpanzee alpha-fetoprotein-encoding gene shows structural similarity to that of gorilla but distinct differences from that of human.
    Nishio H; Gibbs PE; Minghetti PP; Zielinski R; Dugaiczyk A
    Gene; 1995 Sep; 162(2):213-20. PubMed ID: 7557431
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Phylogenomic approaches to common problems encountered in the analysis of low copy repeats: the sulfotransferase 1A gene family example.
    Bradley ME; Benner SA
    BMC Evol Biol; 2005 Mar; 5():22. PubMed ID: 15752422
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Divergence between samples of chimpanzee and human DNA sequences is 5%, counting indels.
    Britten RJ
    Proc Natl Acad Sci U S A; 2002 Oct; 99(21):13633-5. PubMed ID: 12368483
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Chimpanzee fetal G gamma and A gamma globin gene nucleotide sequences provide further evidence of gene conversions in hominine evolution.
    Slightom JL; Chang LY; Koop BF; Goodman M
    Mol Biol Evol; 1985 Sep; 2(5):370-89. PubMed ID: 3870867
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Directionality of point mutation and 5-methylcytosine deamination rates in the chimpanzee genome.
    Jiang C; Zhao Z
    BMC Genomics; 2006 Dec; 7():316. PubMed ID: 17166280
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.