These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 22011380)

  • 1. Hydration sites of unpaired RNA bases: a statistical analysis of the PDB structures.
    Kirillova S; Carugo O
    BMC Struct Biol; 2011 Oct; 11():41. PubMed ID: 22011380
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recognition of nucleic acid bases and base-pairs by hydrogen bonding to amino acid side-chains.
    Cheng AC; Chen WW; Fuhrmann CN; Frankel AD
    J Mol Biol; 2003 Apr; 327(4):781-96. PubMed ID: 12654263
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydration of RNA base pairs.
    Auffinger P; Westhof E
    J Biomol Struct Dyn; 1998 Dec; 16(3):693-707. PubMed ID: 10052625
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unique tertiary and neighbor interactions determine conservation patterns of Cis Watson-Crick A/G base-pairs.
    Sponer J; Mokdad A; Sponer JE; Spacková N; Leszczynski J; Leontis NB
    J Mol Biol; 2003 Jul; 330(5):967-78. PubMed ID: 12860120
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermodynamics of unpaired terminal nucleotides on short RNA helixes correlates with stacking at helix termini in larger RNAs.
    Burkard ME; Kierzek R; Turner DH
    J Mol Biol; 1999 Jul; 290(5):967-82. PubMed ID: 10438596
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular dynamics of the frame-shifting pseudoknot from beet western yellows virus: the role of non-Watson-Crick base-pairing, ordered hydration, cation binding and base mutations on stability and unfolding.
    Csaszar K; Spacková N; Stefl R; Sponer J; Leontis NB
    J Mol Biol; 2001 Nov; 313(5):1073-91. PubMed ID: 11700064
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alteration of the groove width of DNA induced by the multimodal hydrogen bonding of denaturants with DNA bases in its grooves affects their stability.
    Sarkar S; Singh PC
    Biochim Biophys Acta Gen Subj; 2020 Mar; 1864(3):129498. PubMed ID: 31785326
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structure of an RNA double helix incorporating a track of non-Watson-Crick base pairs.
    Holbrook SR; Cheong C; Tinoco I; Kim SH
    Nature; 1991 Oct; 353(6344):579-81. PubMed ID: 1922368
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulations of RNA base pairs in a nanodroplet reveal solvation-dependent stability.
    Sykes MT; Levitt M
    Proc Natl Acad Sci U S A; 2007 Jul; 104(30):12336-40. PubMed ID: 17636124
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RNA solvation: a molecular dynamics simulation perspective.
    Auffinger P; Westhof E
    Biopolymers; 2000-2001; 56(4):266-74. PubMed ID: 11754340
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA base dimers are stabilized by hydrogen-bonding interactions including non-Watson-Crick pairing near graphite surfaces.
    Shankar A; Jagota A; Mittal J
    J Phys Chem B; 2012 Oct; 116(40):12088-94. PubMed ID: 22967176
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Binding of metal ions and water molecules to nucleic acid bases: the influence of water molecule coordination to a metal ion on water-nucleic acid base hydrogen bonds.
    Andrić JM; Stanković IM; Zarić SD
    Acta Crystallogr B Struct Sci Cryst Eng Mater; 2019 Jun; 75(Pt 3):301-309. PubMed ID: 32830651
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Water and ion binding around RNA and DNA (C,G) oligomers.
    Auffinger P; Westhof E
    J Mol Biol; 2000 Jul; 300(5):1113-31. PubMed ID: 10903858
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of the sulfur atom on S2 and S4 positions of the uracil ring in different DNA:RNA hybrid microhelixes with three nucleotide base pairs.
    Alcolea Palafox M
    Biopolymers; 2019 Mar; 110(3):e23247. PubMed ID: 30676643
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isostericity and tautomerism of base pairs in nucleic acids.
    Westhof E
    FEBS Lett; 2014 Aug; 588(15):2464-9. PubMed ID: 24950426
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The crystal structure of the octamer [r(guauaca)dC]2 with six Watson-Crick base-pairs and two 3' overhang residues.
    Shi K; Biswas R; Mitra SN; Sundaralingam M
    J Mol Biol; 2000 May; 299(1):113-22. PubMed ID: 10860726
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure of the dodecamer r(GAUCACUUCGGU) with four 5'-overhang nucleotides.
    Eswaramoorthy S; Rao ST; Pan B; Sundaralingam M
    Acta Crystallogr D Biol Crystallogr; 2004 Jan; 60(Pt 1):8-12. PubMed ID: 14684886
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Interaction of nucleic acid bases with water molecules and formation of mismatched nucleotide pairs].
    Poltev VI; Shteĭnberg SV
    Mol Biol (Mosk); 1987; 21(3):704-13. PubMed ID: 3657771
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrogen and hydration of DNA and RNA oligonucleotides.
    Sundaralingam M; Pan B
    Biophys Chem; 2002 Mar; 95(3):273-82. PubMed ID: 12062385
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RNA structure and dynamics: a base pairing perspective.
    Halder S; Bhattacharyya D
    Prog Biophys Mol Biol; 2013 Nov; 113(2):264-83. PubMed ID: 23891726
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.