These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 2201213)

  • 21. Mechanics and energetics of contraction in thick and in thin filament regulated muscles.
    Rall JA
    Soc Gen Physiol Ser; 1982; 37():203-12. PubMed ID: 6983139
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The variation of isometric energy rates with muscle length: a distribution-moment model analysis.
    Rouhaud E; Zahalak GI
    J Biomech Eng; 1992 Nov; 114(4):542-6. PubMed ID: 1487910
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Advances in understanding the energetics of muscle contraction.
    Barclay CJ; Curtin NA
    J Biomech; 2023 Jul; 156():111669. PubMed ID: 37302165
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chemical Energetics of contraction in mammalian smooth muscle.
    Butler TM; Siegman MJ
    Fed Proc; 1982 Feb; 41(2):204-8. PubMed ID: 7060747
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Endothermic force generation, temperature-jump experiments and effects of increased [MgADP] in rabbit psoas muscle fibres.
    Coupland ME; Pinniger GJ; Ranatunga KW
    J Physiol; 2005 Sep; 567(Pt 2):471-92. PubMed ID: 15975981
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Peak power output is maintained in rabbit psoas and rat soleus single muscle fibers when CTP replaces ATP.
    Wahr PA; Metzger JM
    J Appl Physiol (1985); 1998 Jul; 85(1):76-83. PubMed ID: 9655758
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The mechanisms of force enhancement during constant velocity lengthening in tetanized single fibres of frog muscle.
    Colomo F; Lombardi V; Piazzesi G
    Adv Exp Med Biol; 1988; 226():489-502. PubMed ID: 3261491
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The influence of intracellular pH on contraction, relaxation and [Ca2+]i in intact single fibres from mouse muscle.
    Westerblad H; Allen DG
    J Physiol; 1993 Jul; 466():611-28. PubMed ID: 8410709
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Temperature dependence of mammalian muscle contractions and ATPase activities.
    Stein RB; Gordon T; Shriver J
    Biophys J; 1982 Nov; 40(2):97-107. PubMed ID: 6216923
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Individual correlation of morphology, muscle mechanics, and locomotion in a salamander.
    Bennett AF; Garland T; Else PL
    Am J Physiol; 1989 Jun; 256(6 Pt 2):R1200-8. PubMed ID: 2735445
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Labile heat and changes in rate of relaxation of frog muscles.
    Peckham M; Woledge RC
    J Physiol; 1986 May; 374():123-35. PubMed ID: 3489093
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Physical and biochemical energy balance during an isometric tetanus and steady state recovery in frog sartorius at 0 degree C.
    Paul RJ
    J Gen Physiol; 1983 Mar; 81(3):337-54. PubMed ID: 6601686
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Time-resolved changes in equatorial x-ray diffraction and stiffness during rise of tetanic tension in intact length-clamped single muscle fibers.
    Cecchi G; Griffiths PJ; Bagni MA; Ashley CC; Maeda Y
    Biophys J; 1991 Jun; 59(6):1273-83. PubMed ID: 1873464
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Shortening during stimulation vs. during relaxation. How do the costs compare?
    Lou F; Curtin NA; Woledge RC
    Adv Exp Med Biol; 1998; 453():545-53; discussion 553-5. PubMed ID: 9889867
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of deuterium oxide on mechanics and energetics of skeletal muscle contraction.
    Rall JA
    Am J Physiol; 1980 Sep; 239(3):C105-11. PubMed ID: 6254365
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Depression of tetanic force induced by loaded shortening of frog muscle fibres.
    Edman KA; Caputo C; Lou F
    J Physiol; 1993 Jul; 466():535-52. PubMed ID: 8410705
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Muscle performance following fatigue induced by isotonic and quasi-isometric contractions of rat extensor digitorum longus and soleus muscles in vitro.
    Vedsted P; Larsen AH; Madsen K; Sjøgaard G
    Acta Physiol Scand; 2003 Jun; 178(2):175-86. PubMed ID: 12780392
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of shortening velocity and of oxygen consumption on efficiency of contraction in dog gastrocnemius.
    di Prampero PE; Piiper J
    Eur J Appl Physiol; 2003 Oct; 90(3-4):270-4. PubMed ID: 14523564
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparison of the tension responses to ramp shortening and lengthening in intact mammalian muscle fibres: crossbridge and non-crossbridge contributions.
    Roots H; Offer GW; Ranatunga KW
    J Muscle Res Cell Motil; 2007; 28(2-3):123-39. PubMed ID: 17610136
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization and work optimization of skeletal muscle as a VAD power source.
    Reichenbach SH; Farrar DJ
    ASAIO J; 1994; 40(3):M359-64. PubMed ID: 8555539
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.