These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 22012314)

  • 1. Quantification of cell volume changes upon hyperosmotic stress in Saccharomyces cerevisiae.
    Petelenz-Kurdziel E; Eriksson E; Smedh M; Beck C; Hohmann S; Goksör M
    Integr Biol (Camb); 2011 Nov; 3(11):1120-6. PubMed ID: 22012314
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Yeast osmoregulation.
    Hohmann S; Krantz M; Nordlander B
    Methods Enzymol; 2007; 428():29-45. PubMed ID: 17875410
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A simple mathematical model of adaptation to high osmolarity in yeast.
    Gennemark P; Nordlander B; Hohmann S; Wedelin D
    In Silico Biol; 2006; 6(3):193-214. PubMed ID: 16922683
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hog1: 20 years of discovery and impact.
    Brewster JL; Gustin MC
    Sci Signal; 2014 Sep; 7(343):re7. PubMed ID: 25227612
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence that C-terminal non-kinase domain of Pbs2p has a role in high osmolarity-induced nuclear localization of Hog1p.
    Sharma P; Mondal AK
    Biochem Biophys Res Commun; 2005 Mar; 328(4):906-13. PubMed ID: 15707964
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Zooming in on yeast osmoadaptation.
    Kühn C; Klipp E
    Adv Exp Med Biol; 2012; 736():293-310. PubMed ID: 22161336
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrative model of the response of yeast to osmotic shock.
    Klipp E; Nordlander B; Krüger R; Gennemark P; Hohmann S
    Nat Biotechnol; 2005 Aug; 23(8):975-82. PubMed ID: 16025103
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A quantitative study of the Hog1 MAPK response to fluctuating osmotic stress in Saccharomyces cerevisiae.
    Zi Z; Liebermeister W; Klipp E
    PLoS One; 2010 Mar; 5(3):e9522. PubMed ID: 20209100
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Initiation of the transcriptional response to hyperosmotic shock correlates with the potential for volume recovery.
    Geijer C; Medrala-Klein D; Petelenz-Kurdziel E; Ericsson A; Smedh M; Andersson M; Goksör M; Nadal-Ribelles M; Posas F; Krantz M; Nordlander B; Hohmann S
    FEBS J; 2013 Aug; 280(16):3854-67. PubMed ID: 23758973
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In yeast, loss of Hog1 leads to osmosensitivity of autophagy.
    Prick T; Thumm M; Köhrer K; Häussinger D; Vom Dahl S
    Biochem J; 2006 Feb; 394(Pt 1):153-61. PubMed ID: 16321140
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Osmotic adaptation in yeast--control of the yeast osmolyte system.
    Hohmann S
    Int Rev Cytol; 2002; 215():149-87. PubMed ID: 11952227
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A systems-level analysis of perfect adaptation in yeast osmoregulation.
    Muzzey D; Gómez-Uribe CA; Mettetal JT; van Oudenaarden A
    Cell; 2009 Jul; 138(1):160-71. PubMed ID: 19596242
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Yeast osmosensor Sln1 and plant cytokinin receptor Cre1 respond to changes in turgor pressure.
    Reiser V; Raitt DC; Saito H
    J Cell Biol; 2003 Jun; 161(6):1035-40. PubMed ID: 12821642
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolution of osmosensing signal transduction in Metazoa: stress-activated protein kinases p38 and JNK.
    Böhm M; Gamulin V; Schröder HC; Müller WE
    Cell Tissue Res; 2002 Jun; 308(3):431-8. PubMed ID: 12107436
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic surprises in Saccharomyces cerevisiae during adaptation to saline conditions: questions, some answers and a model.
    Blomberg A
    FEMS Microbiol Lett; 2000 Jan; 182(1):1-8. PubMed ID: 10612722
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Positioning of cell growth and division after osmotic stress requires a MAP kinase pathway.
    Brewster JL; Gustin MC
    Yeast; 1994 Apr; 10(4):425-39. PubMed ID: 7941729
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Passive response of Saccharomyces cerevisiae to osmotic shifts: cell volume variations depending on the physiological state.
    Martinez de Marañon I; Marechal PA; Gervais P
    Biochem Biophys Res Commun; 1996 Oct; 227(2):519-23. PubMed ID: 8878546
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The MEK kinase Ssk2p promotes actin cytoskeleton recovery after osmotic stress.
    Yuzyuk T; Foehr M; Amberg DC
    Mol Biol Cell; 2002 Aug; 13(8):2869-80. PubMed ID: 12181352
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of the adaptive response and growth upon hyperosmotic shock in Saccharomyces cerevisiae.
    Parmar JH; Bhartiya S; Venkatesh KV
    Mol Biosyst; 2011 Apr; 7(4):1138-48. PubMed ID: 21234493
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A model-based study delineating the roles of the two signaling branches of Saccharomyces cerevisiae, Sho1 and Sln1, during adaptation to osmotic stress.
    Parmar JH; Bhartiya S; Venkatesh KV
    Phys Biol; 2009 Aug; 6(3):036019. PubMed ID: 19657148
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.