These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
273 related articles for article (PubMed ID: 22012944)
1. Prediction of gas chromatographic retention indices of some amino acids and carboxylic acids from their structural descriptors. Fatemi MH; Elyasi M J Sep Sci; 2011 Nov; 34(22):3216-20. PubMed ID: 22012944 [TBL] [Abstract][Full Text] [Related]
2. A novel QSAR model for prediction of apoptosis-inducing activity of 4-aryl-4-H-chromenes based on support vector machine. Fatemi MH; Gharaghani S Bioorg Med Chem; 2007 Dec; 15(24):7746-54. PubMed ID: 17870538 [TBL] [Abstract][Full Text] [Related]
3. Investigation of different linear and nonlinear chemometric methods for modeling of retention index of essential oil components: concerns to support vector machine. Riahi S; Pourbasheer E; Ganjali MR; Norouzi P J Hazard Mater; 2009 Jul; 166(2-3):853-9. PubMed ID: 19144466 [TBL] [Abstract][Full Text] [Related]
4. Predictions of chromatographic retention indices of alkylphenols with support vector machines and multiple linear regression. Fatemi MH; Baher E; Ghorbanzade'h M J Sep Sci; 2009 Dec; 32(23-24):4133-42. PubMed ID: 19937857 [TBL] [Abstract][Full Text] [Related]
5. Cross-column prediction of gas-chromatographic retention of polychlorinated biphenyls by artificial neural networks. D'Archivio AA; Incani A; Ruggieri F J Chromatogr A; 2011 Dec; 1218(48):8679-90. PubMed ID: 22000780 [TBL] [Abstract][Full Text] [Related]
6. Prediction of capillary gas chromatographic retention times of fatty acid methyl esters in human blood using MLR, PLS and back-propagation artificial neural networks. Gupta VK; Khani H; Ahmadi-Roudi B; Mirakhorli S; Fereyduni E; Agarwal S Talanta; 2011 Jan; 83(3):1014-22. PubMed ID: 21147352 [TBL] [Abstract][Full Text] [Related]
7. Quantitative structure-property relationship modelling of the degradability rate constant of alkenes by OH radicals in atmosphere. Fatemi MH; Baher E SAR QSAR Environ Res; 2009; 20(1-2):77-90. PubMed ID: 19343584 [TBL] [Abstract][Full Text] [Related]
8. Quantitative study of the structure-retention index relationship in the imine family. Acevedo-Martínez J; Escalona-Arranz JC; Villar-Rojas A; Téllez-Palmero F; Pérez-Rosés R; González L; Carrasco-Velar R J Chromatogr A; 2006 Jan; 1102(1-2):238-44. PubMed ID: 16288769 [TBL] [Abstract][Full Text] [Related]
9. Study of the quantitative structure-mobility relationship of carboxylic acids in capillary electrophoresis based on support vector machines. Xue CX; Zhang RS; Liu MC; Hu ZD; Fan BT J Chem Inf Comput Sci; 2004; 44(3):950-7. PubMed ID: 15154762 [TBL] [Abstract][Full Text] [Related]
10. Quantitative predictions of gas chromatography retention indexes with support vector machines, radial basis neural networks and multiple linear regression. Chen HF Anal Chim Acta; 2008 Feb; 609(1):24-36. PubMed ID: 18243870 [TBL] [Abstract][Full Text] [Related]
11. Prediction of intrinsic solubility of generic drugs using MLR, ANN and SVM analyses. Louis B; Agrawal VK; Khadikar PV Eur J Med Chem; 2010 Sep; 45(9):4018-25. PubMed ID: 20584562 [TBL] [Abstract][Full Text] [Related]
12. A self-adaptive genetic algorithm-artificial neural network algorithm with leave-one-out cross validation for descriptor selection in QSAR study. Wu J; Mei J; Wen S; Liao S; Chen J; Shen Y J Comput Chem; 2010 Jul; 31(10):1956-68. PubMed ID: 20512843 [TBL] [Abstract][Full Text] [Related]
13. Prediction of HPLC retention index using artificial neural networks and IGroup E-state indices. Albaugh DR; Hall LM; Hill DW; Kertesz TM; Parham M; Hall LH; Grant DF J Chem Inf Model; 2009 Apr; 49(4):788-99. PubMed ID: 19309176 [TBL] [Abstract][Full Text] [Related]
14. QSPR study of Setschenow constants of organic compounds using MLR, ANN, and SVM analyses. Xu J; Wang L; Wang L; Shen X; Xu W J Comput Chem; 2011 Nov; 32(15):3241-52. PubMed ID: 21837634 [TBL] [Abstract][Full Text] [Related]
15. Benchmarking of linear and nonlinear approaches for quantitative structure-property relationship studies of metal complexation with ionophores. Tetko IV; Solov'ev VP; Antonov AV; Yao X; Doucet JP; Fan B; Hoonakker F; Fourches D; Jost P; Lachiche N; Varnek A J Chem Inf Model; 2006; 46(2):808-19. PubMed ID: 16563012 [TBL] [Abstract][Full Text] [Related]
16. Prediction of supercritical fluid chromatographic retention factors at different percents of organic modifiers in mobile phase. Fatemi MH; Malekzadeh H; Shamseddin H J Sep Sci; 2009 Feb; 32(4):653-9. PubMed ID: 19160374 [TBL] [Abstract][Full Text] [Related]
17. Comparative multiple quantitative structure-retention relationships modeling of gas chromatographic retention time of essential oils using multiple linear regression, principal component regression, and partial least squares techniques. Qin LT; Liu SS; Liu HL; Tong J J Chromatogr A; 2009 Jul; 1216(27):5302-12. PubMed ID: 19486989 [TBL] [Abstract][Full Text] [Related]
18. Wavelet neural network modeling in QSPR for prediction of solubility of 25 anthraquinone dyes at different temperatures and pressures in supercritical carbon dioxide. Tabaraki R; Khayamian T; Ensafi AA J Mol Graph Model; 2006 Sep; 25(1):46-54. PubMed ID: 16337156 [TBL] [Abstract][Full Text] [Related]
19. Artificial neural network prediction of retention factors of some benzene derivatives and heterocyclic compounds in micellar electrokinetic chromatography. Golmohammadi H; Fatemi MH Electrophoresis; 2005 Sep; 26(18):3438-44. PubMed ID: 16110463 [TBL] [Abstract][Full Text] [Related]
20. QSAR modeling of human serum protein binding with several modeling techniques utilizing structure-information representation. Votano JR; Parham M; Hall LM; Hall LH; Kier LB; Oloff S; Tropsha A J Med Chem; 2006 Nov; 49(24):7169-81. PubMed ID: 17125269 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]