These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
221 related articles for article (PubMed ID: 22013065)
1. Structure function analysis of an ADP-ribosyltransferase type III effector and its RNA-binding target in plant immunity. Jeong BR; Lin Y; Joe A; Guo M; Korneli C; Yang H; Wang P; Yu M; Cerny RL; Staiger D; Alfano JR; Xu Y J Biol Chem; 2011 Dec; 286(50):43272-81. PubMed ID: 22013065 [TBL] [Abstract][Full Text] [Related]
2. A type III effector ADP-ribosylates RNA-binding proteins and quells plant immunity. Fu ZQ; Guo M; Jeong BR; Tian F; Elthon TE; Cerny RL; Staiger D; Alfano JR Nature; 2007 May; 447(7142):284-8. PubMed ID: 17450127 [TBL] [Abstract][Full Text] [Related]
3. Pseudomonas HopU1 modulates plant immune receptor levels by blocking the interaction of their mRNAs with GRP7. Nicaise V; Joe A; Jeong BR; Korneli C; Boutrot F; Westedt I; Staiger D; Alfano JR; Zipfel C EMBO J; 2013 Mar; 32(5):701-12. PubMed ID: 23395902 [TBL] [Abstract][Full Text] [Related]
4. Crystallization and preliminary crystallographic analysis of the ADP-ribosyltransferase HopU1. Lin Y; Wang P; Yang H; Xu Y Acta Crystallogr Sect F Struct Biol Cryst Commun; 2010 Aug; 66(Pt 8):932-4. PubMed ID: 20693672 [TBL] [Abstract][Full Text] [Related]
5. The Pseudomonas syringae type III effector HopF2 suppresses Arabidopsis stomatal immunity. Hurley B; Lee D; Mott A; Wilton M; Liu J; Liu YC; Angers S; Coaker G; Guttman DS; Desveaux D PLoS One; 2014; 9(12):e114921. PubMed ID: 25503437 [TBL] [Abstract][Full Text] [Related]
7. A Pseudomonas syringae ADP-ribosyltransferase inhibits Arabidopsis mitogen-activated protein kinase kinases. Wang Y; Li J; Hou S; Wang X; Li Y; Ren D; Chen S; Tang X; Zhou JM Plant Cell; 2010 Jun; 22(6):2033-44. PubMed ID: 20571112 [TBL] [Abstract][Full Text] [Related]
8. Salicylic acid-dependent and -independent impact of an RNA-binding protein on plant immunity. Hackmann C; Korneli C; Kutyniok M; Köster T; Wiedenlübbert M; Müller C; Staiger D Plant Cell Environ; 2014 Mar; 37(3):696-706. PubMed ID: 23961939 [TBL] [Abstract][Full Text] [Related]
9. Glycine-rich RNA-binding proteins are functionally conserved in Arabidopsis thaliana and Oryza sativa during cold adaptation process. Kim JY; Kim WY; Kwak KJ; Oh SH; Han YS; Kang H J Exp Bot; 2010 May; 61(9):2317-25. PubMed ID: 20231330 [TBL] [Abstract][Full Text] [Related]
10. The type III effector AvrXccB in Xanthomonas campestris pv. campestris targets putative methyltransferases and suppresses innate immunity in Arabidopsis. Liu L; Wang Y; Cui F; Fang A; Wang S; Wang J; Wei C; Li S; Sun W Mol Plant Pathol; 2017 Aug; 18(6):768-782. PubMed ID: 27241588 [TBL] [Abstract][Full Text] [Related]
11. Glycine-rich RNA-binding protein 7 affects abiotic stress responses by regulating stomata opening and closing in Arabidopsis thaliana. Kim JS; Jung HJ; Lee HJ; Kim KA; Goh CH; Woo Y; Oh SH; Han YS; Kang H Plant J; 2008 Aug; 55(3):455-66. PubMed ID: 18410480 [TBL] [Abstract][Full Text] [Related]
12. Molecular cloning, characterization, and stress-responsive expression of genes encoding glycine-rich RNA-binding proteins in Camelina sativa L. Kwak KJ; Kang H; Han KH; Ahn SJ Plant Physiol Biochem; 2013 Jul; 68():44-51. PubMed ID: 23628924 [TBL] [Abstract][Full Text] [Related]
13. The Pseudomonas syringae type III effector HopD1 suppresses effector-triggered immunity, localizes to the endoplasmic reticulum, and targets the Arabidopsis transcription factor NTL9. Block A; Toruño TY; Elowsky CG; Zhang C; Steinbrenner J; Beynon J; Alfano JR New Phytol; 2014 Mar; 201(4):1358-1370. PubMed ID: 24329768 [TBL] [Abstract][Full Text] [Related]
14. CML8, an Arabidopsis Calmodulin-Like Protein, Plays a Role in Pseudomonas syringae Plant Immunity. Zhu X; Robe E; Jomat L; Aldon D; Mazars C; Galaud JP Plant Cell Physiol; 2017 Feb; 58(2):307-319. PubMed ID: 27837097 [TBL] [Abstract][Full Text] [Related]
15. Circadian regulation of the GLYCINE-RICH RNA-BINDING PROTEIN gene by the master clock protein CIRCADIAN CLOCK-ASSOCIATED 1 is important for plant innate immunity. Gao M; Zhang C; Angel W; Kwak O; Allison J; Wiratan L; Hallworth A; Wolf J; Lu H J Exp Bot; 2023 Feb; 74(3):991-1003. PubMed ID: 36367575 [TBL] [Abstract][Full Text] [Related]
16. Different roles of glycine-rich RNA-binding protein7 in plant defense against Pectobacterium carotovorum, Botrytis cinerea, and tobacco mosaic viruses. Lee HJ; Kim JS; Yoo SJ; Kang EY; Han SH; Yang KY; Kim YC; McSpadden Gardener B; Kang H Plant Physiol Biochem; 2012 Nov; 60():46-52. PubMed ID: 22902796 [TBL] [Abstract][Full Text] [Related]
17. The RNA silencing enzyme RNA polymerase v is required for plant immunity. López A; Ramírez V; García-Andrade J; Flors V; Vera P PLoS Genet; 2011 Dec; 7(12):e1002434. PubMed ID: 22242006 [TBL] [Abstract][Full Text] [Related]
18. The glycine-rich domain of GRP7 plays a crucial role in binding long RNAs and facilitating phase separation. Lühmann KL; Seemann S; Martinek N; Ostendorp S; Kehr J Sci Rep; 2024 Jul; 14(1):16018. PubMed ID: 38992080 [TBL] [Abstract][Full Text] [Related]
19. Putative members of the Arabidopsis Nup107-160 nuclear pore sub-complex contribute to pathogen defense. Wiermer M; Cheng YT; Imkampe J; Li M; Wang D; Lipka V; Li X Plant J; 2012 Jun; 70(5):796-808. PubMed ID: 22288649 [TBL] [Abstract][Full Text] [Related]
20. Phase separation of GRP7 facilitated by FERONIA-mediated phosphorylation inhibits mRNA translation to modulate plant temperature resilience. Xu F; Wang L; Li Y; Shi J; Staiger D; Yu F Mol Plant; 2024 Mar; 17(3):460-477. PubMed ID: 38327052 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]