BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 22013066)

  • 1. Small-angle X-ray scattering studies of the oligomeric state and quaternary structure of the trifunctional proline utilization A (PutA) flavoprotein from Escherichia coli.
    Singh RK; Larson JD; Zhu W; Rambo RP; Hura GL; Becker DF; Tanner JJ
    J Biol Chem; 2011 Dec; 286(50):43144-53. PubMed ID: 22013066
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence that the C-terminal domain of a type B PutA protein contributes to aldehyde dehydrogenase activity and substrate channeling.
    Luo M; Christgen S; Sanyal N; Arentson BW; Becker DF; Tanner JJ
    Biochemistry; 2014 Sep; 53(35):5661-73. PubMed ID: 25137435
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biophysical investigation of type A PutAs reveals a conserved core oligomeric structure.
    Korasick DA; Singh H; Pemberton TA; Luo M; Dhatwalia R; Tanner JJ
    FEBS J; 2017 Sep; 284(18):3029-3049. PubMed ID: 28710792
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering a trifunctional proline utilization A chimaera by fusing a DNA-binding domain to a bifunctional PutA.
    Arentson BW; Hayes EL; Zhu W; Singh H; Tanner JJ; Becker DF
    Biosci Rep; 2016 Dec; 36(6):. PubMed ID: 27742866
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure of the proline dehydrogenase domain of the multifunctional PutA flavoprotein.
    Lee YH; Nadaraia S; Gu D; Becker DF; Tanner JJ
    Nat Struct Biol; 2003 Feb; 10(2):109-14. PubMed ID: 12514740
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structures of the PutA peripheral membrane flavoenzyme reveal a dynamic substrate-channeling tunnel and the quinone-binding site.
    Singh H; Arentson BW; Becker DF; Tanner JJ
    Proc Natl Acad Sci U S A; 2014 Mar; 111(9):3389-94. PubMed ID: 24550478
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure and characterization of a class 3B proline utilization A: Ligand-induced dimerization and importance of the C-terminal domain for catalysis.
    Korasick DA; Gamage TT; Christgen S; Stiers KM; Beamer LJ; Henzl MT; Becker DF; Tanner JJ
    J Biol Chem; 2017 Jun; 292(23):9652-9665. PubMed ID: 28420730
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structures of the DNA-binding domain of Escherichia coli proline utilization A flavoprotein and analysis of the role of Lys9 in DNA recognition.
    Larson JD; Jenkins JL; Schuermann JP; Zhou Y; Becker DF; Tanner JJ
    Protein Sci; 2006 Nov; 15(11):2630-41. PubMed ID: 17001030
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structures of Proline Utilization A (PutA) Reveal the Fold and Functions of the Aldehyde Dehydrogenase Superfamily Domain of Unknown Function.
    Luo M; Gamage TT; Arentson BW; Schlasner KN; Becker DF; Tanner JJ
    J Biol Chem; 2016 Nov; 291(46):24065-24075. PubMed ID: 27679491
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural basis of the transcriptional regulation of the proline utilization regulon by multifunctional PutA.
    Zhou Y; Larson JD; Bottoms CA; Arturo EC; Henzl MT; Jenkins JL; Nix JC; Becker DF; Tanner JJ
    J Mol Biol; 2008 Aug; 381(1):174-88. PubMed ID: 18586269
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring the proline-dependent conformational change in the multifunctional PutA flavoprotein by tryptophan fluorescence spectroscopy.
    Zhu W; Becker DF
    Biochemistry; 2005 Sep; 44(37):12297-306. PubMed ID: 16156643
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical and functional characterization of the proline dehydrogenase domain of the PutA flavoprotein from Escherichia coli.
    Vinod MP; Bellur P; Becker DF
    Biochemistry; 2002 May; 41(20):6525-32. PubMed ID: 12009917
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence for hysteretic substrate channeling in the proline dehydrogenase and Δ1-pyrroline-5-carboxylate dehydrogenase coupled reaction of proline utilization A (PutA).
    Moxley MA; Sanyal N; Krishnan N; Tanner JJ; Becker DF
    J Biol Chem; 2014 Feb; 289(6):3639-51. PubMed ID: 24352662
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Involvement of the β3-α3 loop of the proline dehydrogenase domain in allosteric regulation of membrane association of proline utilization A.
    Zhu W; Haile AM; Singh RK; Larson JD; Smithen D; Chan JY; Tanner JJ; Becker DF
    Biochemistry; 2013 Jul; 52(26):4482-91. PubMed ID: 23713611
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystallization and preliminary crystallographic analysis of the proline dehydrogenase domain of the multifunctional PutA flavoprotein from Escherichia coli.
    Nadaraia S; Lee YH; Becker DF; Tanner JJ
    Acta Crystallogr D Biol Crystallogr; 2001 Dec; 57(Pt 12):1925-7. PubMed ID: 11717519
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discovery of the Membrane Binding Domain in Trifunctional Proline Utilization A.
    Christgen SL; Zhu W; Sanyal N; Bibi B; Tanner JJ; Becker DF
    Biochemistry; 2017 Nov; 56(47):6292-6303. PubMed ID: 29090935
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sequence analysis identifies the proline dehydrogenase and delta 1-pyrroline-5-carboxylate dehydrogenase domains of the multifunctional Escherichia coli PutA protein.
    Ling M; Allen SW; Wood JM
    J Mol Biol; 1994 Nov; 243(5):950-6. PubMed ID: 7966312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of proline analog binding on the spectroscopic and redox properties of PutA.
    Zhu W; Gincherman Y; Docherty P; Spilling CD; Becker DF
    Arch Biochem Biophys; 2002 Dec; 408(1):131-6. PubMed ID: 12485611
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification and characterization of the DNA-binding domain of the multifunctional PutA flavoenzyme.
    Gu D; Zhou Y; Kallhoff V; Baban B; Tanner JJ; Becker DF
    J Biol Chem; 2004 Jul; 279(30):31171-6. PubMed ID: 15155740
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of a bifunctional PutA homologue from Bradyrhizobium japonicum and identification of an active site residue that modulates proline reduction of the flavin adenine dinucleotide cofactor.
    Krishnan N; Becker DF
    Biochemistry; 2005 Jun; 44(25):9130-9. PubMed ID: 15966737
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.