These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 22013744)

  • 21. Fed-batch strategy for enhancing cell growth and C-phycocyanin production of Arthrospira (Spirulina) platensis under phototrophic cultivation.
    Xie Y; Jin Y; Zeng X; Chen J; Lu Y; Jing K
    Bioresour Technol; 2015 Mar; 180():281-7. PubMed ID: 25618497
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Diazotrophic growth of Rhodospirillum rubrum with 2-oxoglutarate as sole carbon source affects regulation of nitrogen metabolism as well as the soluble proteome.
    Teixeira PF; Selao TT; Henriksson V; Wang H; Norén A; Nordlund S
    Res Microbiol; 2010 Oct; 161(8):651-9. PubMed ID: 20600859
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Raceway cultivation of Spirulina platensis using underground water.
    Kim CJ; Jung YH; Ko SR; Kim HI; Park YH; Oh HM
    J Microbiol Biotechnol; 2007 May; 17(5):853-7. PubMed ID: 18051309
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Heterotrophic high-cell-density fed-batch and continuous-flow cultures of Galdieria sulphuraria and production of phycocyanin.
    Graverholt OS; Eriksen NT
    Appl Microbiol Biotechnol; 2007 Nov; 77(1):69-75. PubMed ID: 17786429
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Large-scale recovery of C-phycocyanin from Spirulina platensis using expanded bed adsorption chromatography.
    Niu JF; Wang GC; Lin XZ; Zhou BC
    J Chromatogr B Analyt Technol Biomed Life Sci; 2007 May; 850(1-2):267-76. PubMed ID: 17178463
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pyruvate-dependent diauxic growth of Rhodospirillum rubrum in light.
    Solaiman D; Uffen RL
    J Bacteriol; 1982 Dec; 152(3):1175-87. PubMed ID: 6815163
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterisation of a specific phycocyanin-hydrolysing protease purified from Spirulina platensis.
    Nanni B; Balestreri E; Dainese E; Cozzani I; Felicioli R
    Microbiol Res; 2001; 156(3):259-66. PubMed ID: 11716214
    [TBL] [Abstract][Full Text] [Related]  

  • 28. C-phycocyanin, a very potent and novel platelet aggregation inhibitor from Spirulina platensis.
    Hsiao G; Chou PH; Shen MY; Chou DS; Lin CH; Sheu JR
    J Agric Food Chem; 2005 Oct; 53(20):7734-40. PubMed ID: 16190625
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ability of the phototrophic bacterium Rhodospirillum rubrum to produce various poly (beta-hydroxyalkanoates): potential sources for biodegradable polyesters.
    Brandl H; Knee EJ; Fuller RC; Gross RA; Lenz RW
    Int J Biol Macromol; 1989 Feb; 11(1):49-55. PubMed ID: 2518731
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Production of phycocyanin--a pigment with applications in biology, biotechnology, foods and medicine.
    Eriksen NT
    Appl Microbiol Biotechnol; 2008 Aug; 80(1):1-14. PubMed ID: 18563408
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fermentation and anaerobic respiration by Rhodospirillum rubrum and Rhodopseudomonas capsulata.
    Schultz JE; Weaver PF
    J Bacteriol; 1982 Jan; 149(1):181-90. PubMed ID: 6798016
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quorum sensing influences growth and photosynthetic membrane production in high-cell-density cultivations of Rhodospirillum rubrum.
    Carius L; Carius AB; McIntosh M; Grammel H
    BMC Microbiol; 2013 Aug; 13():189. PubMed ID: 23927486
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In vitro antioxidant and antiproliferative activities of selenium-containing phycocyanin from selenium-enriched Spirulina platensis.
    Chen T; Wong YS
    J Agric Food Chem; 2008 Jun; 56(12):4352-8. PubMed ID: 18522403
    [TBL] [Abstract][Full Text] [Related]  

  • 34. FUNCTIONAL CHARACTERS EVALUATION OF BISCUITS SUBLIMATED WITH PURE PHYCOCYANIN ISOLATED FROM SPIRULINA AND SPIRULINA BIOMASS.
    Abd El Baky HH; El Baroty GS; Ibrahem EA
    Nutr Hosp; 2015 Jul; 32(1):231-41. PubMed ID: 26262722
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Effect of nitrogen-containing compounds on hydrogen light emission and nitrogen fixation by purple bacteria].
    Kondrat'eva EN; Gogotov IN; Gruzinskiĭ IV
    Mikrobiologiia; 1979; 48(3):389-95. PubMed ID: 112358
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Two pathways of electron transport to nitrogenase in Rhodospirillum rubrum: the major pathway is dependent on the fix gene products.
    Edgren T; Nordlund S
    FEMS Microbiol Lett; 2006 Jul; 260(1):30-5. PubMed ID: 16790015
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Purification and characterization of a catalase from photosynthetic bacterium Rhodospirillum rubrum S1 grown under anaerobic conditions.
    Kang YS; Lee DH; Yoon BJ; Oh DC
    J Microbiol; 2006 Apr; 44(2):185-91. PubMed ID: 16728955
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Purification and characterization of selenium-containing phycocyanin from selenium-enriched Spirulina platensis.
    Chen T; Wong YS; Zheng W
    Phytochemistry; 2006 Nov; 67(22):2424-30. PubMed ID: 16973186
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Effect of growth conditions on the activity of the enzymes of cyclic 3':5'-AMP synthesis and decay in phototrophic bacteria].
    Guliev NM; Fedenko EP; Komarova TI; Doman NG
    Biokhimiia; 1978 May; 43(5):928-34. PubMed ID: 207363
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pyruvate fermentation in light-grown cells of Rhodospirillum rubrum during adaptation to anaerobic dark conditions.
    Voelskow H; Schön G
    Arch Microbiol; 1978 Nov; 119(2):129-33. PubMed ID: 103509
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.