BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 22013880)

  • 1. Comparison of three quantitative phosphoproteomic strategies to study receptor tyrosine kinase signaling.
    Zhang G; Neubert TA
    J Proteome Res; 2011 Dec; 10(12):5454-62. PubMed ID: 22013880
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative proteomic approaches for studying phosphotyrosine signaling.
    Ding SJ; Qian WJ; Smith RD
    Expert Rev Proteomics; 2007 Feb; 4(1):13-23. PubMed ID: 17288512
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphotyrosine Profiling Using SILAC.
    Datta KK; Chatterjee A; Gowda H
    Methods Mol Biol; 2023; 2603():117-125. PubMed ID: 36370274
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of Phosphotyrosine Signaling Networks in Lung Cancer Cell Lines.
    Broncel M; Huang PH
    Methods Mol Biol; 2017; 1636():253-262. PubMed ID: 28730484
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative phosphotyrosine proteomics of EphB2 signaling by stable isotope labeling with amino acids in cell culture (SILAC).
    Zhang G; Spellman DS; Skolnik EY; Neubert TA
    J Proteome Res; 2006 Mar; 5(3):581-8. PubMed ID: 16512673
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative proteomic analysis of phosphotyrosine-mediated cellular signaling networks.
    Zhang Y; Wolf-Yadlin A; White FM
    Methods Mol Biol; 2007; 359():203-12. PubMed ID: 17484120
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Finding the same needles in the haystack? A comparison of phosphotyrosine peptides enriched by immuno-affinity precipitation and metal-based affinity chromatography.
    Di Palma S; Zoumaro-Djayoon A; Peng M; Post H; Preisinger C; Munoz J; Heck AJ
    J Proteomics; 2013 Oct; 91():331-7. PubMed ID: 23917254
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Global phosphoproteomic effects of natural tyrosine kinase inhibitor, genistein, on signaling pathways.
    Yan GR; Xiao CL; He GW; Yin XF; Chen NP; Cao Y; He QY
    Proteomics; 2010 Mar; 10(5):976-86. PubMed ID: 20049867
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative analysis of HGF and EGF-dependent phosphotyrosine signaling networks.
    Hammond DE; Hyde R; Kratchmarova I; Beynon RJ; Blagoev B; Clague MJ
    J Proteome Res; 2010 May; 9(5):2734-42. PubMed ID: 20222723
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep Phospho- and Phosphotyrosine Proteomics Identified Active Kinases and Phosphorylation Networks in Colorectal Cancer Cell Lines Resistant to Cetuximab.
    Abe Y; Nagano M; Kuga T; Tada A; Isoyama J; Adachi J; Tomonaga T
    Sci Rep; 2017 Sep; 7(1):10463. PubMed ID: 28874695
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of stable isotope labeling by amino acids in cell culture (SILAC) for phosphotyrosine protein identification and quantitation.
    Zhang G; Neubert TA
    Methods Mol Biol; 2009; 527():79-92, xi. PubMed ID: 19241007
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphotyrosine proteomic study of interferon alpha signaling pathway using a combination of immunoprecipitation and immobilized metal affinity chromatography.
    Zheng H; Hu P; Quinn DF; Wang YK
    Mol Cell Proteomics; 2005 Jun; 4(6):721-30. PubMed ID: 15659558
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of different phospho-tyrosine antibodies for label-free phosphoproteomics.
    van der Mijn JC; Labots M; Piersma SR; Pham TV; Knol JC; Broxterman HJ; Verheul HM; Jiménez CR
    J Proteomics; 2015 Sep; 127(Pt B):259-63. PubMed ID: 25890253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of receptor interacting protein (RIP3)-dependent protein phosphorylation by quantitative phosphoproteomics.
    Wu X; Tian L; Li J; Zhang Y; Han V; Li Y; Xu X; Li H; Chen X; Chen J; Jin W; Xie Y; Han J; Zhong CQ
    Mol Cell Proteomics; 2012 Dec; 11(12):1640-51. PubMed ID: 22942356
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In-depth qualitative and quantitative profiling of tyrosine phosphorylation using a combination of phosphopeptide immunoaffinity purification and stable isotope dimethyl labeling.
    Boersema PJ; Foong LY; Ding VM; Lemeer S; van Breukelen B; Philp R; Boekhorst J; Snel B; den Hertog J; Choo AB; Heck AJ
    Mol Cell Proteomics; 2010 Jan; 9(1):84-99. PubMed ID: 19770167
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative phospho-proteomic profiling of hepatocyte growth factor (HGF)-MET signaling in colorectal cancer.
    Organ SL; Tong J; Taylor P; St-Germain JR; Navab R; Moran MF; Tsao MS
    J Proteome Res; 2011 Jul; 10(7):3200-11. PubMed ID: 21609022
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tissue phosphoproteomics with PolyMAC identifies potential therapeutic targets in a transgenic mouse model of HER2 positive breast cancer.
    Searleman AC; Iliuk AB; Collier TS; Chodosh LA; Tao WA; Bose R
    Electrophoresis; 2014 Dec; 35(24):3463-9. PubMed ID: 24723360
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SH2 Domains as Affinity Reagents for Phosphotyrosine Protein Enrichment and Proteomic Analysis.
    Ke M; Chu B; Lin L; Tian R
    Methods Mol Biol; 2017; 1555():395-406. PubMed ID: 28092045
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative phosphoproteomic analysis reveals a role for serine and threonine kinases in the cytoskeletal reorganization in early T cell receptor activation in human primary T cells.
    Ruperez P; Gago-Martinez A; Burlingame AL; Oses-Prieto JA
    Mol Cell Proteomics; 2012 May; 11(5):171-86. PubMed ID: 22499768
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Screening for EphB signaling effectors using SILAC with a linear ion trap-orbitrap mass spectrometer.
    Zhang G; Fenyö D; Neubert TA
    J Proteome Res; 2008 Nov; 7(11):4715-26. PubMed ID: 18816084
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.