These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 2201406)
21. A hydrogen-bonding network modulating enzyme function: asparagine-194 and tyrosine-225 of Escherichia coli aspartate aminotransferase. Yano T; Mizuno T; Kagamiyama H Biochemistry; 1993 Feb; 32(7):1810-5. PubMed ID: 8439541 [TBL] [Abstract][Full Text] [Related]
22. Redesign of the substrate specificity of Escherichia coli aspartate aminotransferase to that of Escherichia coli tyrosine aminotransferase by homology modeling and site-directed mutagenesis. Onuffer JJ; Kirsch JF Protein Sci; 1995 Sep; 4(9):1750-7. PubMed ID: 8528073 [TBL] [Abstract][Full Text] [Related]
23. Spectroscopic characterization of true enzyme-substrate intermediates of aspartate aminotransferase trapped at subzero temperatures. Sterk M; Gehring H Eur J Biochem; 1991 Nov; 201(3):703-7. PubMed ID: 1935964 [TBL] [Abstract][Full Text] [Related]
24. Kinetic studies with the use of proton-magnetic-resonance spectroscopy of the specific alpha-deuteration of amino acids by Escherichia coli aspartate aminotransferase. Gout E; Chesne S; Beguin CG; Pelmont J Biochem J; 1978 Jun; 171(3):719-23. PubMed ID: 352342 [TBL] [Abstract][Full Text] [Related]
25. Effect of aspartate on complexes between glutamate dehydrogenase and various aminotransferases. Fahien LA; Hsu SL; Kmiotek E J Biol Chem; 1977 Feb; 252(4):1250-6. PubMed ID: 14147 [TBL] [Abstract][Full Text] [Related]
26. Kynurenine aminotransferase and glutamine transaminase K of Escherichia coli: identity with aspartate aminotransferase. Han Q; Fang J; Li J Biochem J; 2001 Dec; 360(Pt 3):617-23. PubMed ID: 11736651 [TBL] [Abstract][Full Text] [Related]
27. Examining the structural and chemical flexibility of the active site base, Lys-258, of Escherichia coli aspartate aminotransferase by replacement with unnatural amino acids. Gloss LM; Kirsch JF Biochemistry; 1995 Sep; 34(38):12323-32. PubMed ID: 7547975 [TBL] [Abstract][Full Text] [Related]
28. Transient-state kinetics of the reaction of aspartate aminotransferase with aspartate at low pH reveals dual routes in the enzyme-substrate association process. Hayashi H; Kagamiyama H Biochemistry; 1997 Nov; 36(44):13558-69. PubMed ID: 9354624 [TBL] [Abstract][Full Text] [Related]
29. The use of natural and unnatural amino acid substrates to define the substrate specificity differences of Escherichia coli aspartate and tyrosine aminotransferases. Onuffer JJ; Ton BT; Klement I; Kirsch JF Protein Sci; 1995 Sep; 4(9):1743-9. PubMed ID: 8528072 [TBL] [Abstract][Full Text] [Related]
30. [Arg292----Val] or [Arg292----Leu] mutation enhances the reactivity of Escherichia coli aspartate aminotransferase with aromatic amino acids. Hayashi H; Kuramitsu S; Inoue Y; Morino Y; Kagamiyama H Biochem Biophys Res Commun; 1989 Feb; 159(1):337-42. PubMed ID: 2564274 [TBL] [Abstract][Full Text] [Related]
31. Mechanism of action of aspartate aminotransferase proposed on the basis of its spatial structure. Kirsch JF; Eichele G; Ford GC; Vincent MG; Jansonius JN; Gehring H; Christen P J Mol Biol; 1984 Apr; 174(3):497-525. PubMed ID: 6143829 [TBL] [Abstract][Full Text] [Related]
32. The amino-acid substituents of dipeptide substrates of cathepsin C can determine the rate-limiting steps of catalysis. Rubach JK; Cui G; Schneck JL; Taylor AN; Zhao B; Smallwood A; Nevins N; Wisnoski D; Thrall SH; Meek TD Biochemistry; 2012 Sep; 51(38):7551-68. PubMed ID: 22928782 [TBL] [Abstract][Full Text] [Related]
33. The mechanism of Escherichia coli tryptophan indole-lyase: substituent effects on steady-state and pre-steady-state kinetic parameters for aryl-substituted tryptophan derivatives. Lee M; Phillips RS Bioorg Med Chem; 1995 Feb; 3(2):195-205. PubMed ID: 7796054 [TBL] [Abstract][Full Text] [Related]
34. Use of site-directed mutagenesis and alternative substrates to assign the prototropic groups important to catalysis by Escherichia coli aspartate aminotransferase. Gloss LM; Kirsch JF Biochemistry; 1995 Mar; 34(12):3999-4007. PubMed ID: 7696265 [TBL] [Abstract][Full Text] [Related]
35. The imine-pyridine torsion of the pyridoxal 5'-phosphate Schiff base of aspartate aminotransferase lowers its pKa in the unliganded enzyme and is crucial for the successive increase in the pKa during catalysis. Hayashi H; Mizuguchi H; Kagamiyama H Biochemistry; 1998 Oct; 37(43):15076-85. PubMed ID: 9790670 [TBL] [Abstract][Full Text] [Related]
36. Enzyme flexibility: a new concept in recognition of hydrophobic substrates. Kawaguchi S; Nobe Y; Yasuoka J; Wakamiya T; Kusumoto S; Kuramitsu S J Biochem; 1997 Jul; 122(1):55-63. PubMed ID: 9276671 [TBL] [Abstract][Full Text] [Related]
37. Reaction of aspartate aminotransferase with C5-dicarboxylic acids: comparison with the reaction with C4-dicarboxylic acids. Islam MM; Hayashi H; Kagamiyama H J Biochem; 2003 Aug; 134(2):277-85. PubMed ID: 12966078 [TBL] [Abstract][Full Text] [Related]
38. [Kinetics of the aspartate-aminotransferase reaction catalyzed by free and immobilized cells of E. coli]. Iakovleva VI; Malofeeva IV; Nguen FV; Berezin IV Biokhimiia; 1979 Oct; 44(10):1787-95. PubMed ID: 389295 [TBL] [Abstract][Full Text] [Related]
39. The K258R mutant of aspartate aminotransferase stabilizes the quinonoid intermediate. Toney MD; Kirsch JF J Biol Chem; 1991 Dec; 266(35):23900-3. PubMed ID: 1748661 [TBL] [Abstract][Full Text] [Related]
40. The enantiomeric error frequency of aspartate aminotransferase. Kochhar S; Christen P Eur J Biochem; 1988 Aug; 175(2):433-8. PubMed ID: 2900141 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]