These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 22014168)

  • 1. Unprecedented ultra-high-resolution hydroxy group (1)H NMR spectroscopic analysis of plant extracts.
    Charisiadis P; Primikyri A; Exarchou V; Tzakos A; Gerothanassis IP
    J Nat Prod; 2011 Nov; 74(11):2462-6. PubMed ID: 22014168
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel determination of the total phenolic content in crude plant extracts by the use of 1H NMR of the -OH spectral region.
    Nerantzaki AA; Tsiafoulis CG; Charisiadis P; Kontogianni VG; Gerothanassis IP
    Anal Chim Acta; 2011 Feb; 688(1):54-60. PubMed ID: 21296205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid and direct low micromolar NMR method for the simultaneous detection of hydrogen peroxide and phenolics in plant extracts.
    Charisiadis P; Tsiafoulis CG; Exarchou V; Tzakos AG; Gerothanassis IP
    J Agric Food Chem; 2012 May; 60(18):4508-13. PubMed ID: 22524670
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Triterpenes in the hexane extract of leaves of Olea europaea L.: analysis using 13C-NMR spectroscopy.
    Duquesnoy E; Castola V; Casanova J
    Phytochem Anal; 2007; 18(4):347-53. PubMed ID: 17623370
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of new phenolic compounds from leaves of Olea europaea L. by high-resolution tandem mass spectrometry.
    Di Donna L; Mazzotti F; Salerno R; Tagarelli A; Taverna D; Sindona G
    Rapid Commun Mass Spectrom; 2007; 21(22):3653-7. PubMed ID: 17939156
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polyphenolic constituents of Callistemon lanceolatus leaves.
    Mahmoud II; Moharram FA; Marzouk MS; Linscheid MW; Saleh MI
    Pharmazie; 2002 Jul; 57(7):494-6. PubMed ID: 12168536
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complete assignments of 1H and 13C NMR data for 10 phenylethanoid glycosides.
    Wu J; Huang J; Xiao Q; Zhang S; Xiao Z; Li Q; Long L; Huang L
    Magn Reson Chem; 2004 Jul; 42(7):659-62. PubMed ID: 15181637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two new triterpenoid isomers from Nerium oleander leaves.
    Siddiqui BS; Khatoon N; Begum S; Durrani SA
    Nat Prod Res; 2009; 23(17):1603-8. PubMed ID: 19851926
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phenolic Compounds from the Leaves of Castanopsis fargesii.
    Huang YL; Wang YF; Liu JL; Wang L; Tanaka T; Chen YY; Lu FL; Li DP
    Molecules; 2017 Jan; 22(1):. PubMed ID: 28106844
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 1H and 13C NMR assignments for two new angular furanocoumarin glycosides from Peucedanum praeruptorum.
    Chang H; Okada Y; Okuyama T; Tu P
    Magn Reson Chem; 2007 Jul; 45(7):611-4. PubMed ID: 17534876
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new tetracyclic triterpenoid from the leaves of Azadirachta indica.
    Siddiqui BS; Afshan F; Sham-Sul-Arfeen ; Gulzar T
    Nat Prod Res; 2006 Oct; 20(12):1036-40. PubMed ID: 17127654
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative changes in phenolic content during physiological development of the olive (Olea europaea) cultivar Hardy's Mammoth.
    Ryan D; Prenzler PD; Lavee S; Antolovich M; Robards K
    J Agric Food Chem; 2003 Apr; 51(9):2532-8. PubMed ID: 12696932
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnoflorine and phenolic derivatives from the leaves of Croton xalapensis L. (Euphorbiaceae).
    Arevalo C; Lotti C; Piccinelli AL; Russo M; Ruiz I; Rastrelli L
    Nat Prod Commun; 2009 Dec; 4(12):1697-700. PubMed ID: 20120110
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alkylresorcinol derivatives and sesquiterpene lactones from Cichorium spinosum.
    Melliou E; Magiatis P; Skaltsounis AL
    J Agric Food Chem; 2003 Feb; 51(5):1289-92. PubMed ID: 12590470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new acylated quercetin glycoside from the leaves of Stevia rebaudiana Bertoni.
    Li J; Jiang H; Shi R
    Nat Prod Res; 2009; 23(15):1378-83. PubMed ID: 19809909
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polyphenolic compounds in Scopolia caucasica Kolesn. ex Kreyer (Solanaceae).
    Wolbiś M; Nowak S; Kicel A
    Acta Pol Pharm; 2007; 64(3):241-6. PubMed ID: 17695147
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Terpenoid constituents of Aster subspicatus and A. ageratoides.
    Ahmed AA; Mahmoud AA; Hegazy MF; Paré PW; Karchesy J
    Pharmazie; 2002 Aug; 57(8):567-9. PubMed ID: 12227200
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure elucidation of casbane diterpenes from Croton argyrophyllus.
    e Silva-Filho FA; Braz-Filho R; Silveira ER; Lima MA
    Magn Reson Chem; 2011 Jun; 49(6):370-3. PubMed ID: 21452347
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of nonpolar metabolites in plant extracts by 13C NMR spectroscopy.
    Palomino-Schätzlein M; Escrig PV; Boira H; Primo J; Pineda-Lucena A; Cabedo N
    J Agric Food Chem; 2011 Nov; 59(21):11407-16. PubMed ID: 21955286
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Complete 1H and 13C assignments of 8-C-beta-D-[2-O-(E)-p-coumaroyl]glucopyranosyl-2-(2-hydroxy)propyl-7-methoxy-5-methylchromone.
    Meng Y; Yan BZ; Wang HM; Hu GF; Liu FY; Song YG; Liu Y
    Magn Reson Chem; 2004 Jun; 42(6):564-6. PubMed ID: 15137050
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.