These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 22014464)
1. Relationships between the anisotropy of longitudinal wave velocity and hydroxyapatite crystallite orientation in bovine cortical bone. Yamamoto K; Nakatsuji T; Yaoi Y; Yamato Y; Yanagitani T; Matsukawa M; Yamazaki K; Matsuyama Y Ultrasonics; 2012 Mar; 52(3):377-86. PubMed ID: 22014464 [TBL] [Abstract][Full Text] [Related]
2. Correlation between hydroxyapatite crystallite orientation and ultrasonic wave velocities in bovine cortical bone. Yamato Y; Matsukawa M; Yanagitani T; Yamazaki K; Mizukawa H; Nagano A Calcif Tissue Int; 2008 Feb; 82(2):162-9. PubMed ID: 18246292 [TBL] [Abstract][Full Text] [Related]
3. Distribution of hydroxyapatite crystallite orientation and ultrasonic wave velocity in ring-shaped cortical bone of bovine femur. Yamato Y; Matsukawa M; Mizukawa H; Yanagitani T; Yamazaki K; Nagano A IEEE Trans Ultrason Ferroelectr Freq Control; 2008; 55(6):1298-303. PubMed ID: 18599417 [TBL] [Abstract][Full Text] [Related]
4. Quantitative ultrasound (QUS) axial transmission method reflects anisotropy in micro-arrangement of apatite crystallites in human long bones: A study with 3-MHz-frequency ultrasound. Ishimoto T; Suetoshi R; Cretin D; Hagihara K; Hashimoto J; Kobayashi A; Nakano T Bone; 2019 Oct; 127():82-90. PubMed ID: 31170537 [TBL] [Abstract][Full Text] [Related]
5. Relationship between bone tissue strain and lattice strain of HAp crystals in bovine cortical bone under tensile loading. Fujisaki K; Tadano S J Biomech; 2007; 40(8):1832-8. PubMed ID: 17078958 [TBL] [Abstract][Full Text] [Related]
6. Dependence of ultrasonic attenuation on bone mass and microstructure in bovine cortical bone. Sasso M; Haïat G; Yamato Y; Naili S; Matsukawa M J Biomech; 2008; 41(2):347-55. PubMed ID: 18028934 [TBL] [Abstract][Full Text] [Related]
7. Orientation of bone mineral and its role in the anisotropic mechanical properties of bone--transverse anisotropy. Sasaki N; Matsushima N; Ikawa T; Yamamura H; Fukuda A J Biomech; 1989; 22(2):157-64. PubMed ID: 2540205 [TBL] [Abstract][Full Text] [Related]
8. Influence of osteon area fraction and degree of orientation of HAp crystals on mechanical properties in bovine femur. Yamada S; Tadano S; Fujisaki K; Kodaki Y J Biomech; 2013 Jan; 46(1):31-5. PubMed ID: 23084783 [TBL] [Abstract][Full Text] [Related]
9. Frequency dependence of ultrasonic attenuation in bovine cortical bone: an in vitro study. Sasso M; Haïat G; Yamato Y; Naili S; Matsukawa M Ultrasound Med Biol; 2007 Dec; 33(12):1933-42. PubMed ID: 17681677 [TBL] [Abstract][Full Text] [Related]
10. A Wavelet-Based Processing method for simultaneously determining ultrasonic velocity and material thickness. Loosvelt M; Lasaygues P Ultrasonics; 2011 Apr; 51(3):325-39. PubMed ID: 21094965 [TBL] [Abstract][Full Text] [Related]
11. Dissociation of mineral and collagen orientations may differentially adapt compact bone for regional loading environments: results from acoustic velocity measurements in deer calcanei. Skedros JG; Sorenson SM; Takano Y; Turner CH Bone; 2006 Jul; 39(1):143-51. PubMed ID: 16459155 [TBL] [Abstract][Full Text] [Related]
12. Distribution of longitudinal wave properties in bovine cortical bone in vitro. Yamato Y; Matsukawa M; Otani T; Yamazaki K; Nagano A Ultrasonics; 2006 Dec; 44 Suppl 1():e233-7. PubMed ID: 16860358 [TBL] [Abstract][Full Text] [Related]
13. Effects of structural anisotropy of cancellous bone on speed of ultrasonic fast waves in the bovine femur. Mizuno K; Matsukawa M; Otani T; Takada M; Mano I; Tsujimoto T IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jul; 55(7):1480-7. PubMed ID: 18986937 [TBL] [Abstract][Full Text] [Related]
14. The in vitro measurement of ultrasound in cancellous bone. Langton CM; Hodgskinson R Stud Health Technol Inform; 1997; 40():175-99. PubMed ID: 10168878 [TBL] [Abstract][Full Text] [Related]
15. A method on strain measurement of HAP in cortical bone from diffusive profile of X-ray diffraction. Fujisaki K; Tadano S; Sasaki N J Biomech; 2006; 39(3):579-86. PubMed ID: 16389098 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of the distribution and orientation of remineralized enamel crystallites in subsurface lesions by X-ray diffraction. Tanaka T; Yagi N; Ohta T; Matsuo Y; Terada H; Kamasaka K; To-o K; Kometani T; Kuriki T Caries Res; 2010; 44(3):253-9. PubMed ID: 20516685 [TBL] [Abstract][Full Text] [Related]
17. Nanostructure and elastic modulus of single trabecula in bovine cancellous bone. Yamada S; Tadano S; Fukuda S J Biomech; 2014 Nov; 47(14):3482-7. PubMed ID: 25267574 [TBL] [Abstract][Full Text] [Related]
18. Mineral anisotropy in mineralized tissues is similar among species and mineral growth occurs independently of collagen orientation in rats: results from acoustic velocity measurements. Takano Y; Turner CH; Burr DB J Bone Miner Res; 1996 Sep; 11(9):1292-301. PubMed ID: 8864904 [TBL] [Abstract][Full Text] [Related]
19. Orthogonal relationships between ultrasonic velocity and material properties of bovine cancellous bone. Njeh CF; Hodgskinson R; Currey JD; Langton CM Med Eng Phys; 1996 Jul; 18(5):373-81. PubMed ID: 8818135 [TBL] [Abstract][Full Text] [Related]
20. Is quantitative ultrasound dependent on bone structure? A reflection. Njeh CF; Fuerst T; Diessel E; Genant HK Osteoporos Int; 2001; 12(1):1-15. PubMed ID: 11305077 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]