BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

359 related articles for article (PubMed ID: 22014784)

  • 1. Identification of mutation points in Cupriavidus necator NCIMB 11599 and genetic reconstitution of glucose-utilization ability in wild strain H16 for polyhydroxyalkanoate production.
    Orita I; Iwazawa R; Nakamura S; Fukui T
    J Biosci Bioeng; 2012 Jan; 113(1):63-9. PubMed ID: 22014784
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extension of the substrate utilization range of Ralstonia eutropha strain H16 by metabolic engineering to include mannose and glucose.
    Sichwart S; Hetzler S; Bröker D; Steinbüchel A
    Appl Environ Microbiol; 2011 Feb; 77(4):1325-34. PubMed ID: 21169447
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of each individual component of the mutated PTS(Nag) on glucose uptake and phosphorylation in Ralstonia eutropha G⁺1.
    Raberg M; Kaddor C; Kusian B; Stahlhut G; Budinova R; Kolev N; Bowien B; Steinbüchel A
    Appl Microbiol Biotechnol; 2012 Aug; 95(3):735-44. PubMed ID: 22307500
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteomic and transcriptomic elucidation of the mutant ralstonia eutropha G+1 with regard to glucose utilization.
    Raberg M; Peplinski K; Heiss S; Ehrenreich A; Voigt B; Döring C; Bömeke M; Hecker M; Steinbüchel A
    Appl Environ Microbiol; 2011 Mar; 77(6):2058-70. PubMed ID: 21278273
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of promoters for gene expression in polyhydroxyalkanoate-producing Cupriavidus necator H16.
    Fukui T; Ohsawa K; Mifune J; Orita I; Nakamura S
    Appl Microbiol Biotechnol; 2011 Mar; 89(5):1527-36. PubMed ID: 21279346
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancement of glycerol utilization ability of Ralstonia eutropha H16 for production of polyhydroxyalkanoates.
    Fukui T; Mukoyama M; Orita I; Nakamura S
    Appl Microbiol Biotechnol; 2014 Sep; 98(17):7559-68. PubMed ID: 24878751
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Construction of a stable plasmid vector for industrial production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) by a recombinant Cupriavidus necator H16 strain.
    Sato S; Fujiki T; Matsumoto K
    J Biosci Bioeng; 2013 Dec; 116(6):677-81. PubMed ID: 23816763
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic engineering of Cupriavidus necator H16 for improved chemoautotrophic growth and PHB production under oxygen-limiting conditions.
    Tang R; Weng C; Peng X; Han Y
    Metab Eng; 2020 Sep; 61():11-23. PubMed ID: 32348842
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid selection of glucose-utilizing variants of the polyhydroxyalkanoate producer Ralstonia eutropha H16 by incubation with high substrate levels.
    Franz A; Rehner R; Kienle A; Grammel H
    Lett Appl Microbiol; 2012 Jan; 54(1):45-51. PubMed ID: 22044343
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome characteristics dictate poly-R-(3)-hydroxyalkanoate production in Cupriavidus necator H16.
    Kutralam-Muniasamy G; Peréz-Guevara F
    World J Microbiol Biotechnol; 2018 May; 34(6):79. PubMed ID: 29799066
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of the core components of the phosphoenolpyruvate-carbohydrate phosphotransferase system, HPr and EI, on differential protein expression in Ralstonia eutropha H16.
    Kaddor C; Voigt B; Hecker M; Steinbüchel A
    J Proteome Res; 2012 Jul; 11(7):3624-36. PubMed ID: 22630130
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ralstonia eutropha H16 in progress: Applications beside PHAs and establishment as production platform by advanced genetic tools.
    Raberg M; Volodina E; Lin K; Steinbüchel A
    Crit Rev Biotechnol; 2018 Jun; 38(4):494-510. PubMed ID: 29233025
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polyhydroxyalkanoate production from sucrose by Cupriavidus necator strains harboring csc genes from Escherichia coli W.
    Arikawa H; Matsumoto K; Fujiki T
    Appl Microbiol Biotechnol; 2017 Oct; 101(20):7497-7507. PubMed ID: 28889198
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microbial synthesis of poly((R)-3-hydroxybutyrate-co-3-hydroxypropionate) from unrelated carbon sources by engineered Cupriavidus necator.
    Fukui T; Suzuki M; Tsuge T; Nakamura S
    Biomacromolecules; 2009 Apr; 10(4):700-6. PubMed ID: 19267466
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering of polyhydroxyalkanoate (PHA) synthase PhaC2Ps of Pseudomonas stutzeri via site-specific mutation for efficient production of PHA copolymers.
    Shen XW; Shi ZY; Song G; Li ZJ; Chen GQ
    Appl Microbiol Biotechnol; 2011 Aug; 91(3):655-65. PubMed ID: 21509565
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-wide transcriptome analyses of the 'Knallgas' bacterium Ralstonia eutropha H16 with regard to polyhydroxyalkanoate metabolism.
    Peplinski K; Ehrenreich A; Döring C; Bömeke M; Reinecke F; Hutmacher C; Steinbüchel A
    Microbiology (Reading); 2010 Jul; 156(Pt 7):2136-2152. PubMed ID: 20395272
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-scale reconstruction and in silico analysis of the Ralstonia eutropha H16 for polyhydroxyalkanoate synthesis, lithoautotrophic growth, and 2-methyl citric acid production.
    Park JM; Kim TY; Lee SY
    BMC Syst Biol; 2011 Jun; 5():101. PubMed ID: 21711532
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of homologous phosphoenolpyruvate-carbohydrate phosphotransferase system proteins on carbohydrate uptake and poly(3-Hydroxybutyrate) accumulation in Ralstonia eutropha H16.
    Kaddor C; Steinbüchel A
    Appl Environ Microbiol; 2011 Jun; 77(11):3582-90. PubMed ID: 21478317
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Physiological and biochemical characteristics and capacity for polyhydroxyalkanoates synthesis in a glucose-utilizing strain of hydrogen-oxidizing bacteria, Ralstonia eutropha B8562].
    Volova TG; Kozhevnikov IV; Dolgopolova IuB; Trusova MIu; Kalacheva GS; Aref'eva IuV
    Mikrobiologiia; 2005; 74(6):788-94. PubMed ID: 16400989
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Limiting metabolic steps in the utilization of D-xylose by recombinant Ralstonia eutropha W50-EAB].
    Wang L; Liu G; Zhang Y; Wang Y; Ding J; Weng W
    Wei Sheng Wu Xue Bao; 2015 Feb; 55(2):164-75. PubMed ID: 25958696
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.