BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 22015572)

  • 1. Reducing the interval between volume acquisitions improves "sparse" scanning protocols in event-related auditory fMRI.
    Liem F; Lutz K; Luechinger R; Jäncke L; Meyer M
    Brain Topogr; 2012 Apr; 25(2):182-93. PubMed ID: 22015572
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of "silent" clustered and sparse temporal fMRI acquisitions in tonal and speech perception tasks.
    Zaehle T; Schmidt CF; Meyer M; Baumann S; Baltes C; Boesiger P; Jancke L
    Neuroimage; 2007 Oct; 37(4):1195-204. PubMed ID: 17644001
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatio-temporal analysis of auditory cortex activation as detected with silent event related fMRI.
    Christensen WF; Yetkin FZ
    Stat Med; 2005 Aug; 24(16):2539-56. PubMed ID: 15909287
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional fields in human auditory cortex revealed by time-resolved fMRI without interference of EPI noise.
    Di Salle F; Formisano E; Seifritz E; Linden DE; Scheffler K; Saulino C; Tedeschi G; Zanella FE; Pepino A; Goebel R; Marciano E
    Neuroimage; 2001 Feb; 13(2):328-38. PubMed ID: 11162273
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Event-related fMRI of the auditory cortex.
    Belin P; Zatorre RJ; Hoge R; Evans AC; Pike B
    Neuroimage; 1999 Oct; 10(4):417-29. PubMed ID: 10493900
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigating brain response to music: a comparison of different fMRI acquisition schemes.
    Mueller K; Mildner T; Fritz T; Lepsien J; Schwarzbauer C; Schroeter ML; Möller HE
    Neuroimage; 2011 Jan; 54(1):337-43. PubMed ID: 20728550
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessing the influence of scanner background noise on auditory processing. I. An fMRI study comparing three experimental designs with varying degrees of scanner noise.
    Gaab N; Gabrieli JD; Glover GH
    Hum Brain Mapp; 2007 Aug; 28(8):703-20. PubMed ID: 17080440
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for rapid auditory perception as the foundation of speech processing: a sparse temporal sampling fMRI study.
    Zaehle T; Wüstenberg T; Meyer M; Jäncke L
    Eur J Neurosci; 2004 Nov; 20(9):2447-56. PubMed ID: 15525285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A multivariate approach for processing magnetization effects in triggered event-related functional magnetic resonance imaging time series.
    Esposito F; Di Salle F; Hennel F; Santopaolo O; Herdener M; Scheffler K; Goebel R; Seifritz E
    Neuroimage; 2006 Mar; 30(1):136-43. PubMed ID: 16242348
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of sequence repeat time on auditory cortex stimulation during phonetic discrimination.
    Shah NJ; Steinhoff S; Mirzazade S; Zafiris O; Grosse-Ruyken ML; Jäncke L; Zilles K
    Neuroimage; 2000 Jul; 12(1):100-8. PubMed ID: 10875906
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing BOLD response in the auditory system by neurophysiologically tuned fMRI sequence.
    Seifritz E; Di Salle F; Esposito F; Herdener M; Neuhoff JG; Scheffler K
    Neuroimage; 2006 Feb; 29(3):1013-22. PubMed ID: 16253522
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessing the influence of scanner background noise on auditory processing. II. An fMRI study comparing auditory processing in the absence and presence of recorded scanner noise using a sparse design.
    Gaab N; Gabrieli JD; Glover GH
    Hum Brain Mapp; 2007 Aug; 28(8):721-32. PubMed ID: 17089376
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integration of EEG source imaging and fMRI during continuous viewing of natural movies.
    Whittingstall K; Bartels A; Singh V; Kwon S; Logothetis NK
    Magn Reson Imaging; 2010 Oct; 28(8):1135-42. PubMed ID: 20579829
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Disparity of activation onset in sensory cortex from simultaneous auditory and visual stimulation: Differences between perfusion and blood oxygenation level-dependent functional magnetic resonance imaging.
    Liu HL; Feng CM; Li J; Su FC; Li N; Glahn D; Gao JH
    J Magn Reson Imaging; 2005 Feb; 21(2):111-7. PubMed ID: 15666409
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Detection of central auditory compensation in unilateral deafness with functional magnetic resonance tomography].
    Tschopp K; Schillinger C; Schmid N; Rausch M; Bilecen D; Scheffler K
    Laryngorhinootologie; 2000 Dec; 79(12):753-7. PubMed ID: 11199459
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mapping continuous neuronal activation without an ON-OFF paradigm: initial results of BOLD ceiling fMRI.
    Haller S; Wetzel SG; Radue EW; Bilecen D
    Eur J Neurosci; 2006 Nov; 24(9):2672-8. PubMed ID: 17100855
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural correlates of auditory repetition priming: reduced fMRI activation in the auditory cortex.
    Bergerbest D; Ghahremani DG; Gabrieli JD
    J Cogn Neurosci; 2004; 16(6):966-77. PubMed ID: 15298784
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimizing the imaging of the monkey auditory cortex: sparse vs. continuous fMRI.
    Petkov CI; Kayser C; Augath M; Logothetis NK
    Magn Reson Imaging; 2009 Oct; 27(8):1065-73. PubMed ID: 19269764
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Silent and continuous fMRI scanning differentially modulate activation in an auditory language comprehension task.
    Schmidt CF; Zaehle T; Meyer M; Geiser E; Boesiger P; Jancke L
    Hum Brain Mapp; 2008 Jan; 29(1):46-56. PubMed ID: 17318832
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Frequency specific impairment of automatic pitch change detection by fMRI acoustic noise: an MEG study.
    Novitski N; Maess B; Tervaniemi M
    J Neurosci Methods; 2006 Jul; 155(1):149-59. PubMed ID: 16530843
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.