These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 22015611)
1. Single-chain polymer nanoparticles. Aiertza MK; Odriozola I; Cabañero G; Grande HJ; Loinaz I Cell Mol Life Sci; 2012 Feb; 69(3):337-46. PubMed ID: 22015611 [TBL] [Abstract][Full Text] [Related]
2. Single-chain polymer nanoparticles in controlled drug delivery and targeted imaging. Kröger APP; Paulusse JMJ J Control Release; 2018 Sep; 286():326-347. PubMed ID: 30077737 [TBL] [Abstract][Full Text] [Related]
3. A facile approach to architecturally defined nanoparticles via intramolecular chain collapse. Harth E; Van Horn B; Lee VY; Germack DS; Gonzales CP; Miller RD; Hawker CJ J Am Chem Soc; 2002 Jul; 124(29):8653-60. PubMed ID: 12121107 [TBL] [Abstract][Full Text] [Related]
4. Dynamic in vivo imaging of dual-triggered microspheres for sustained release applications: synthesis, characterization and cytotoxicity study. Efthimiadou EK; Tapeinos C; Chatzipavlidis A; Boukos N; Fragogeorgi E; Palamaris L; Loudos G; Kordas G Int J Pharm; 2014 Jan; 461(1-2):54-63. PubMed ID: 24286923 [TBL] [Abstract][Full Text] [Related]
5. Effect of the Protein Chain Conformation on the Collapse into Nanoparticles. Le TP; Cavalcanti L; Tellam JP; Malo de Molina P Biomacromolecules; 2024 Oct; 25(10):6602-6610. PubMed ID: 39228081 [TBL] [Abstract][Full Text] [Related]
6. Polymeric Janus Nanoparticles: Recent Advances in Synthetic Strategies, Materials Properties, and Applications. Fan X; Yang J; Loh XJ; Li Z Macromol Rapid Commun; 2019 Mar; 40(5):e1800203. PubMed ID: 29900609 [TBL] [Abstract][Full Text] [Related]
7. Influence of Magnetic Nanoparticles on PISA Preparation of Poly(Methacrylic Acid)-b-Poly(Methylmethacrylate) Nano-Objects. Upadhyaya L; Egbosimba C; Qian X; Wickramasinghe R; Fernández-Pacheco R; Coelhoso IM; Portugal CAM; Crespo JG; Quemener D; Semsarilar M Macromol Rapid Commun; 2019 Jan; 40(2):e1800333. PubMed ID: 30027594 [TBL] [Abstract][Full Text] [Related]
8. Enhanced stability of core-surface cross-linked micelles fabricated from amphiphilic brush copolymers. Xu P; Tang H; Li S; Ren J; Van Kirk E; Murdoch WJ; Radosz M; Shen Y Biomacromolecules; 2004; 5(5):1736-44. PubMed ID: 15360282 [TBL] [Abstract][Full Text] [Related]
10. DNA block copolymers: functional materials for nanoscience and biomedicine. Schnitzler T; Herrmann A Acc Chem Res; 2012 Sep; 45(9):1419-30. PubMed ID: 22726237 [TBL] [Abstract][Full Text] [Related]
11. Thinking Outside the 'Block': Alternative Polymer Compositions for Micellar Drug Delivery. Jones MC Curr Top Med Chem; 2015; 15(22):2254-66. PubMed ID: 26043738 [TBL] [Abstract][Full Text] [Related]
12. Donor-Acceptor Core-Shell Nanoparticles and Their Application in Non-Volatile Transistor Memory Devices. Lo CT; Watanabe Y; Murakami D; Shih CC; Nakabayashi K; Mori H; Chen WC Macromol Rapid Commun; 2019 Jun; 40(12):e1900115. PubMed ID: 31021501 [TBL] [Abstract][Full Text] [Related]
13. Synthetic surfactant- and cross-linker-free preparation of highly stable lipid-polymer hybrid nanoparticles as potential oral delivery vehicles. Wang T; Xue J; Hu Q; Zhou M; Chang C; Luo Y Sci Rep; 2017 Jun; 7(1):2750. PubMed ID: 28584240 [TBL] [Abstract][Full Text] [Related]
14. Consequences of block sequence on the orthogonal folding of triblock copolymers. Hosono N; Stals PJ; Palmans AR; Meijer EW Chem Asian J; 2014 Apr; 9(4):1099-107. PubMed ID: 24678056 [TBL] [Abstract][Full Text] [Related]
15. Engineering of amphiphilic block copolymers for polymeric micellar drug and gene delivery. Xiong XB; Falamarzian A; Garg SM; Lavasanifar A J Control Release; 2011 Oct; 155(2):248-61. PubMed ID: 21621570 [TBL] [Abstract][Full Text] [Related]
16. Photocrosslinked poly(amidoamine) nanoparticles for central nervous system targeting. Gevorgyan S; Rossi E; Cappelluti MA; Tocchio A; Martello F; Gerges I; Lenardi C; Milani P; Argentiere S Colloids Surf B Biointerfaces; 2017 Mar; 151():197-205. PubMed ID: 28013163 [TBL] [Abstract][Full Text] [Related]
17. Drug Delivery Vehicles Based on Albumin-Polymer Conjugates. Jiang Y; Stenzel M Macromol Biosci; 2016 Jun; 16(6):791-802. PubMed ID: 26947019 [TBL] [Abstract][Full Text] [Related]
18. Charge-controlled nanoprecipitation as a modular approach to ultrasmall polymer nanocarriers: making bright and stable nanoparticles. Reisch A; Runser A; Arntz Y; Mély Y; Klymchenko AS ACS Nano; 2015 May; 9(5):5104-16. PubMed ID: 25894117 [TBL] [Abstract][Full Text] [Related]
19. Size-Dependent Electroporation of Dye-Loaded Polymer Nanoparticles for Efficient and Safe Intracellular Delivery. Egloff S; Runser A; Klymchenko A; Reisch A Small Methods; 2021 Feb; 5(2):e2000947. PubMed ID: 34927896 [TBL] [Abstract][Full Text] [Related]
20. Construction of Degradable and Amphiphilic Triblock Polymer Carriers for Effective Delivery of siRNA. Yan Y; Zhu F; Su H; Liu X; Ren Q; Huang F; Ye W; Zhao M; Zhao Y; Zhao J; Shuai Q Macromol Biosci; 2022 Dec; 22(12):e2200232. PubMed ID: 36086889 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]