These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

335 related articles for article (PubMed ID: 22015612)

  • 1. Nanoparticle-based drug delivery: case studies for cancer and cardiovascular applications.
    Galvin P; Thompson D; Ryan KB; McCarthy A; Moore AC; Burke CS; Dyson M; Maccraith BD; Gun'ko YK; Byrne MT; Volkov Y; Keely C; Keehan E; Howe M; Duffy C; MacLoughlin R
    Cell Mol Life Sci; 2012 Feb; 69(3):389-404. PubMed ID: 22015612
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanocarriers for tracking and treating diseases.
    Marrache S; Pathak RK; Darley KL; Choi JH; Zaver D; Kolishetti N; Dhar S
    Curr Med Chem; 2013; 20(28):3500-14. PubMed ID: 23834187
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theranostic Nanoparticles for RNA-Based Cancer Treatment.
    Revia RA; Stephen ZR; Zhang M
    Acc Chem Res; 2019 Jun; 52(6):1496-1506. PubMed ID: 31135134
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein nanoparticles as drug delivery carriers for cancer therapy.
    Lohcharoenkal W; Wang L; Chen YC; Rojanasakul Y
    Biomed Res Int; 2014; 2014():180549. PubMed ID: 24772414
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy.
    Pérez-Herrero E; Fernández-Medarde A
    Eur J Pharm Biopharm; 2015 Jun; 93():52-79. PubMed ID: 25813885
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polymeric nanoparticles as carrier for targeted and controlled delivery of anticancer agents.
    Taghipour-Sabzevar V; Sharifi T; Moghaddam MM
    Ther Deliv; 2019 Aug; 10(8):527-550. PubMed ID: 31496433
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Co-delivery of Docetaxel and Disulfonate Tetraphenyl Chlorin in One Nanoparticle Produces Strong Synergism between Chemo- and Photodynamic Therapy in Drug-Sensitive and -Resistant Cancer Cells.
    Gaio E; Conte C; Esposito D; Miotto G; Quaglia F; Moret F; Reddi E
    Mol Pharm; 2018 Oct; 15(10):4599-4611. PubMed ID: 30148955
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New molecular targets for functionalized nanosized drug delivery systems in personalized therapy for hepatocellular carcinoma.
    Turato C; Balasso A; Carloni V; Tiribelli C; Mastrotto F; Mazzocca A; Pontisso P
    J Control Release; 2017 Dec; 268():184-197. PubMed ID: 29051062
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanocarriers for cancer-targeted drug delivery.
    Kumari P; Ghosh B; Biswas S
    J Drug Target; 2016; 24(3):179-91. PubMed ID: 26061298
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Drug Encapsulated Nanoparticles for Treating Targeted Cells.
    Suk KH; Gopinath SCB
    Curr Med Chem; 2017; 24(30):3310-3321. PubMed ID: 28464786
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of Targeted Nanostructured Coordination Polymers (NCPs) for Cancer Therapy.
    Novio F
    Molecules; 2020 Jul; 25(15):. PubMed ID: 32751178
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Poly(lactide)-vitamin E derivative/montmorillonite nanoparticle formulations for the oral delivery of Docetaxel.
    Feng SS; Mei L; Anitha P; Gan CW; Zhou W
    Biomaterials; 2009 Jul; 30(19):3297-306. PubMed ID: 19299012
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gold Nanoparticles for the Delivery of Cancer Therapeutics.
    Connor DM; Broome AM
    Adv Cancer Res; 2018; 139():163-184. PubMed ID: 29941104
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Layer-by-layer pH-sensitive nanoparticles for drug delivery and controlled release with improved therapeutic efficacy
    Men W; Zhu P; Dong S; Liu W; Zhou K; Bai Y; Liu X; Gong S; Zhang S
    Drug Deliv; 2020 Dec; 27(1):180-190. PubMed ID: 31924103
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoparticles-mediated drug delivery approaches for cancer targeting: a review.
    Sultana S; Khan MR; Kumar M; Kumar S; Ali M
    J Drug Target; 2013 Feb; 21(2):107-25. PubMed ID: 22873288
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Organic nanoparticle systems for spatiotemporal control of multimodal chemotherapy.
    Meng F; Han N; Yeo Y
    Expert Opin Drug Deliv; 2017 Mar; 14(3):427-446. PubMed ID: 27476442
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polymer nanoparticles for the intravenous delivery of anticancer drugs: the checkpoints on the road from the synthesis to clinical translation.
    Ferrari R; Sponchioni M; Morbidelli M; Moscatelli D
    Nanoscale; 2018 Dec; 10(48):22701-22719. PubMed ID: 30512025
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tumor-Acidity-Cleavable Maleic Acid Amide (TACMAA): A Powerful Tool for Designing Smart Nanoparticles To Overcome Delivery Barriers in Cancer Nanomedicine.
    Du JZ; Li HJ; Wang J
    Acc Chem Res; 2018 Nov; 51(11):2848-2856. PubMed ID: 30346728
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrophobic Cysteine Poly(disulfide)-based Redox-Hypersensitive Nanoparticle Platform for Cancer Theranostics.
    Wu J; Zhao L; Xu X; Bertrand N; Choi WI; Yameen B; Shi J; Shah V; Mulvale M; MacLean JL; Farokhzad OC
    Angew Chem Int Ed Engl; 2015 Aug; 54(32):9218-23. PubMed ID: 26119453
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stimulus-responsive macromolecules and nanoparticles for cancer drug delivery.
    MacEwan SR; Callahan DJ; Chilkoti A
    Nanomedicine (Lond); 2010 Jul; 5(5):793-806. PubMed ID: 20662649
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.