These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 22015913)

  • 1. Role of vortices in cavitation formation in the flow at the closure of a bileaflet mitral mechanical heart valve.
    Li CP; Chen SF; Lo CW; Lu PC
    J Artif Organs; 2012 Mar; 15(1):57-64. PubMed ID: 22015913
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of vortices in cavitation formation in the flow across a mechanical heart valve.
    Li CP; Lu PC; Liu JS; Lo CW; Hwang NH
    J Heart Valve Dis; 2008 Jul; 17(4):435-45. PubMed ID: 18751474
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regurgitant flow field characteristics of the St. Jude bileaflet mechanical heart valve under physiologic pulsatile flow using particle image velocimetry.
    Manning KB; Kini V; Fontaine AA; Deutsch S; Tarbell JM
    Artif Organs; 2003 Sep; 27(9):840-6. PubMed ID: 12940907
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of tip angle on cavitation potential during closure of a bileaflet prosthesis model.
    Zhang P; Yeo JH; Qian P; Hwang NH
    J Heart Valve Dis; 2007 Jul; 16(4):430-9. PubMed ID: 17702370
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic particle image velocimetry flow analysis of the flow field immediately downstream of bileaflet mechanical mitral prostheses.
    Akutsu T; Saito J
    J Artif Organs; 2006; 9(3):165-78. PubMed ID: 16998702
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Particle image velocimetry investigation of intravalvular flow fields of a bileaflet mechanical heart valve in a pulsatile flow.
    Subramanian A; Mu H; Kadambi JR; Wernet MP; Brendzel AM; Harasaki H
    J Heart Valve Dis; 2000 Sep; 9(5):721-31. PubMed ID: 11041190
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pressure field in the vicinity of mechanical valve occluders at the instant of valve closure: correlation with cavitation initiation.
    Chandran KB; Lee CS; Chen LD
    J Heart Valve Dis; 1994 Apr; 3 Suppl 1():S65-75; discussion S75-6. PubMed ID: 8061871
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An experimental-computational analysis of MHV cavitation: effects of leaflet squeezing and rebound.
    Makhijani VB; Yang HQ; Singhal AK; Hwang NH
    J Heart Valve Dis; 1994 Apr; 3 Suppl 1():S35-44; discussion S44-8. PubMed ID: 8061869
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transient pressure at closing of a monoleaflet mechanical heart valve prosthesis: mounting compliance effect.
    Wu ZJ; Gao BZ; Hwang NH
    J Heart Valve Dis; 1995 Sep; 4(5):553-67. PubMed ID: 8581200
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Turbulence characteristics downstream of a new trileaflet mechanical heart valve.
    Li CP; Chen SF; Lo CW; Lu PC
    ASAIO J; 2011; 57(3):188-96. PubMed ID: 21499078
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ventricular pressure slope and bileaflet mechanical heart valve closure.
    Wu ZJ; Hwang NH
    ASAIO J; 1995; 41(3):M763-7. PubMed ID: 8573909
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of vortices in growth of microbubbles at mitral mechanical heart valve closure.
    Rambod E; Beizai M; Sahn DJ; Gharib M
    Ann Biomed Eng; 2007 Jul; 35(7):1131-45. PubMed ID: 17404890
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Can vortices in the flow across mechanical heart valves contribute to cavitation?
    Avrahami I; Rosenfeld M; Einav S; Eichler M; Reul H
    Med Biol Eng Comput; 2000 Jan; 38(1):93-7. PubMed ID: 10829397
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrating particle image velocimetry and laser Doppler velocimetry measurements of the regurgitant flow field past mechanical heart valves.
    Kini V; Bachmann C; Fontaine A; Deutsch S; Tarbell JM
    Artif Organs; 2001 Feb; 25(2):136-45. PubMed ID: 11251479
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Occluder closing behavior: a key factor in mechanical heart valve cavitation.
    Wu ZJ; Wang Y; Hwang NH
    J Heart Valve Dis; 1994 Apr; 3 Suppl 1():S25-33; discussion S33-4. PubMed ID: 8061868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitral heart valve cavitation in an artificial heart environment.
    Sneckenberger DS; Stinebring DR; Deutsch S; Geselowitz DB; Tarbell JM
    J Heart Valve Dis; 1996 Mar; 5(2):216-27. PubMed ID: 8665017
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Near field flow characteristics of the Bjork-Shiley Monostrut valve in a modified single shot valve chamber.
    Manning KB; Przybysz TM; Fontaine AA; Tarbell JM; Deutsch S
    ASAIO J; 2005; 51(2):133-8. PubMed ID: 15839436
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms of cavitation and the formation of stable bubbles on the Björk-Shiley Monostrut prosthetic heart valve.
    Bachmann C; Kini V; Deutsch S; Fontaine AA; Tarbell JM
    J Heart Valve Dis; 2002 Jan; 11(1):105-13. PubMed ID: 11843495
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A squeeze flow phenomenon at the closing of a bileaflet mechanical heart valve prosthesis.
    Bluestein D; Einav S; Hwang NH
    J Biomech; 1994 Nov; 27(11):1369-78. PubMed ID: 7798287
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms of mechanical heart valve cavitation: investigation using a tilting disk valve model.
    He Z; Xi B; Zhu K; Hwang NH
    J Heart Valve Dis; 2001 Sep; 10(5):666-74. PubMed ID: 11603607
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.