BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

544 related articles for article (PubMed ID: 22016026)

  • 1. GPU-based fast Monte Carlo simulation for radiotherapy dose calculation.
    Jia X; Gu X; Graves YJ; Folkerts M; Jiang SB
    Phys Med Biol; 2011 Nov; 56(22):7017-31. PubMed ID: 22016026
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a GPU-based Monte Carlo dose calculation code for coupled electron-photon transport.
    Jia X; Gu X; Sempau J; Choi D; Majumdar A; Jiang SB
    Phys Med Biol; 2010 Jun; 55(11):3077-86. PubMed ID: 20463376
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A GPU OpenCL based cross-platform Monte Carlo dose calculation engine (goMC).
    Tian Z; Shi F; Folkerts M; Qin N; Jiang SB; Jia X
    Phys Med Biol; 2015 Oct; 60(19):7419-35. PubMed ID: 26352012
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ARCHERRT - a GPU-based and photon-electron coupled Monte Carlo dose computing engine for radiation therapy: software development and application to helical tomotherapy.
    Su L; Yang Y; Bednarz B; Sterpin E; Du X; Liu T; Ji W; Xu XG
    Med Phys; 2014 Jul; 41(7):071709. PubMed ID: 24989378
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GPU-based Monte Carlo radiotherapy dose calculation using phase-space sources.
    Townson RW; Jia X; Tian Z; Graves YJ; Zavgorodni S; Jiang SB
    Phys Med Biol; 2013 Jun; 58(12):4341-56. PubMed ID: 23732697
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A GPU implementation of EGSnrc's Monte Carlo photon transport for imaging applications.
    Lippuner J; Elbakri IA
    Phys Med Biol; 2011 Nov; 56(22):7145-62. PubMed ID: 22025188
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dosimetric verification and clinical evaluation of a new commercially available Monte Carlo-based dose algorithm for application in stereotactic body radiation therapy (SBRT) treatment planning.
    Fragoso M; Wen N; Kumar S; Liu D; Ryu S; Movsas B; Munther A; Chetty IJ
    Phys Med Biol; 2010 Aug; 55(16):4445-64. PubMed ID: 20668343
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GMC: a GPU implementation of a Monte Carlo dose calculation based on Geant4.
    Jahnke L; Fleckenstein J; Wenz F; Hesser J
    Phys Med Biol; 2012 Mar; 57(5):1217-29. PubMed ID: 22330587
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clinical implementation of a GPU-based simplified Monte Carlo method for a treatment planning system of proton beam therapy.
    Kohno R; Hotta K; Nishioka S; Matsubara K; Tansho R; Suzuki T
    Phys Med Biol; 2011 Nov; 56(22):N287-94. PubMed ID: 22036894
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A deterministic partial differential equation model for dose calculation in electron radiotherapy.
    Duclous R; Dubroca B; Frank M
    Phys Med Biol; 2010 Jul; 55(13):3843-57. PubMed ID: 20571208
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A fast GPU-accelerated Monte Carlo engine for calculation of MLC-collimated electron fields.
    Brost EE; Wan Chan Tseung H; Antolak JA
    Med Phys; 2023 Jan; 50(1):600-618. PubMed ID: 35986907
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An analytic linear accelerator source model for GPU-based Monte Carlo dose calculations.
    Tian Z; Li Y; Folkerts M; Shi F; Jiang SB; Jia X
    Phys Med Biol; 2015 Oct; 60(20):7941-67. PubMed ID: 26418216
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of PENFAST--a fast Monte Carlo code for dose calculations in photon and electron radiotherapy treatment planning.
    Habib B; Poumarede B; Tola F; Barthe J
    Phys Med; 2010 Jan; 26(1):17-25. PubMed ID: 19342258
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fast on-site Monte Carlo tool for dose calculations in CT applications.
    Chen W; Kolditz D; Beister M; Bohle R; Kalender WA
    Med Phys; 2012 Jun; 39(6):2985-96. PubMed ID: 22755683
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extension and validation of a GPU-Monte Carlo dose engine gDPM for 1.5 T MR-LINAC online independent dose verification.
    Li Y; Ding S; Wang B; Liu H; Huang X; Song T
    Med Phys; 2021 Oct; 48(10):6174-6183. PubMed ID: 34387872
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A preliminary study of in-house Monte Carlo simulations: an integrated Monte Carlo verification system.
    Mukumoto N; Tsujii K; Saito S; Yasunaga M; Takegawa H; Yamamoto T; Numasaki H; Teshima T
    Int J Radiat Oncol Biol Phys; 2009 Oct; 75(2):571-9. PubMed ID: 19735883
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GPU-based Monte Carlo simulation for light propagation in complex heterogeneous tissues.
    Ren N; Liang J; Qu X; Li J; Lu B; Tian J
    Opt Express; 2010 Mar; 18(7):6811-23. PubMed ID: 20389700
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a GPU-superposition Monte Carlo code for fast dose calculation in magnetic fields.
    Li Y; Sun W; Liu H; Ding S; Wang B; Huang X; Song T
    Phys Med Biol; 2022 Jun; 67(12):. PubMed ID: 35588723
    [No Abstract]   [Full Text] [Related]  

  • 19. New capabilities of the Monte Carlo dose engine ARCHER-RT: Clinical validation of the Varian TrueBeam machine for VMAT external beam radiotherapy.
    Adam DP; Liu T; Caracappa PF; Bednarz BP; Xu XG
    Med Phys; 2020 Jun; 47(6):2537-2549. PubMed ID: 32175615
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GPU-accelerated Monte Carlo convolution/superposition implementation for dose calculation.
    Zhou B; Yu CX; Chen DZ; Hu XS
    Med Phys; 2010 Nov; 37(11):5593-603. PubMed ID: 21158271
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.