These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 22016042)

  • 1. Recharge signal identification based on groundwater level observations.
    Yu HL; Chu HJ
    Environ Monit Assess; 2012 Oct; 184(10):5971-82. PubMed ID: 22016042
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computation of groundwater resources and recharge in Chithar River Basin, South India.
    Subramani T; Babu S; Elango L
    Environ Monit Assess; 2013 Jan; 185(1):983-94. PubMed ID: 22961326
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Groundwater recharge at five representative sites in the Hebei Plain, China.
    Lu X; Jin M; van Genuchten MT; Wang B
    Ground Water; 2011; 49(2):286-94. PubMed ID: 20100294
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Topographic factor in the groundwater estimations--a case study in typical semi-arid hard rock environments of Andhra Pradesh.
    Raj P
    Environ Monit Assess; 2011 Jul; 178(1-4):309-19. PubMed ID: 20824328
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Natural recharge to sustainable yield from the barind aquifer: a tool in preparing effective management plan of groundwater resources.
    Monirul Islam M; Kanungoe P
    Water Sci Technol; 2005; 52(12):251-8. PubMed ID: 16477993
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characteristics of groundwater recharge on the North China Plain.
    Tan XC; Wu JW; Cai SY; Yang JZ
    Ground Water; 2014; 52(5):798-807. PubMed ID: 24032445
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using domestic well records to determine fractured bedrock watersheds and recharge rates.
    Metcalf MJ; Robbins GA
    Ground Water; 2014; 52(5):782-8. PubMed ID: 24102252
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Linking chloride mass balance infiltration rates with chlorofluorocarbon and SF6 groundwater dating in semi-arid settings: potential and limitations.
    Stadler S; Osenbruck K; Duijnisveld WH; Schwiede M; Bottcher J
    Isotopes Environ Health Stud; 2010 Sep; 46(3):312-24. PubMed ID: 20812119
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identifying groundwater end members by spatio-temporal isotopic and hydrogeochemical records.
    Pérez-Quezadas J; Cortés-Silva A; Morales-Casique E; Escolero-Fuentes OA; Medina-Ortega P
    Isotopes Environ Health Stud; 2020; 56(5-6):431-445. PubMed ID: 32930001
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimation of groundwater recharge via deuterium labelling in the semi-arid Cuvelai-Etosha Basin, Namibia.
    Beyer M; Gaj M; Hamutoko JT; Koeniger P; Wanke H; Himmelsbach T
    Isotopes Environ Health Stud; 2015; 51(4):533-52. PubMed ID: 26414647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydro-chemical assessment and groundwater recharge mechanism in the humid tropics: a case study.
    Hameed AS; Prasad NB
    J Environ Sci Eng; 2008 Oct; 50(4):263-70. PubMed ID: 19697760
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new method for estimating recharge to unconfined aquifers using differential river gauging.
    McCallum AM; Andersen MS; Acworth RI
    Ground Water; 2014; 52(2):291-7. PubMed ID: 23550897
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Piezometric level and electrical conductivity spatiotemporal monitoring as an instrument to design further managed aquifer recharge strategies in a complex estuarial system under anthropogenic pressure.
    Coelho VHR; Bertrand GF; Montenegro SMGL; Paiva ALR; Almeida CN; Galvão CO; Barbosa LR; Batista LFDR; Ferreira ELGA
    J Environ Manage; 2018 Mar; 209():426-439. PubMed ID: 29309966
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Groundwater Vulnerability Assessment of the Pingtung Plain in Southern Taiwan.
    Liang CP; Jang CS; Liang CW; Chen JS
    Int J Environ Res Public Health; 2016 Nov; 13(11):. PubMed ID: 27886103
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using atmospheric tracers to reduce uncertainty in groundwater recharge areas.
    Starn JJ; Bagtzoglou AC; Robbins GA
    Ground Water; 2010; 48(6):858-68. PubMed ID: 21416662
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Groundwater flow in a relatively old oceanic volcanic island: the Betancuria area, Fuerteventura Island, Canary Islands, Spain.
    Herrera C; Custodio E
    Sci Total Environ; 2014 Oct; 496():531-550. PubMed ID: 25108255
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Depletion and capture: revisiting "the source of water derived from wells".
    Konikow LF; Leake SA
    Ground Water; 2014 Sep; 52 Suppl 1():100-11. PubMed ID: 24890464
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Groundwater recharge rate and zone structure estimation using PSOLVER algorithm.
    Ayvaz MT; Elçi A
    Ground Water; 2014; 52(3):434-47. PubMed ID: 23746002
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Groundwater levels time series sensitivity to pluviometry and air temperature: a geostatistical approach to Sfax region, Tunisia.
    Triki I; Trabelsi N; Hentati I; Zairi M
    Environ Monit Assess; 2014 Mar; 186(3):1593-608. PubMed ID: 24141484
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Movement of water infiltrated from a recharge basin to wells.
    O'Leary DR; Izbicki JA; Moran JE; Meeth T; Nakagawa B; Metzger L; Bonds C; Singleton MJ
    Ground Water; 2012; 50(2):242-55. PubMed ID: 21740423
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.