These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 22016208)

  • 1. Estimate for the effect of forward scattering on the measurement of extinction for particles by cavity ringdown spectroscopy.
    Smith GS
    Appl Opt; 2011 Oct; 50(28):5422-9. PubMed ID: 22016208
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Forward scattering of a Gaussian beam by a nonabsorbing sphere.
    Hodges JT; Gréhan G; Gouesbet G; Presser C
    Appl Opt; 1995 Apr; 34(12):2120-32. PubMed ID: 21037758
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cavity ring-down spectroscopy measurements of single aerosol particle extinction. I. The effect of position of a particle within the laser beam on extinction.
    Butler TJ; Miller JL; Orr-Ewing AJ
    J Chem Phys; 2007 May; 126(17):174302. PubMed ID: 17492858
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurements of Light Extinction by Single Aerosol Particles.
    Walker JS; Carruthers AE; Orr-Ewing AJ; Reid JP
    J Phys Chem Lett; 2013 May; 4(10):1748-52. PubMed ID: 26282989
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electromagnetic scattering for a uniaxial anisotropic sphere in an off-axis obliquely incident Gaussian beam.
    Yuan QK; Wu ZS; Li ZJ
    J Opt Soc Am A Opt Image Sci Vis; 2010 Jun; 27(6):1457-65. PubMed ID: 20508716
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Edge-effect contribution to the extinction of light by dielectric disks and cylindrical particles.
    Bi L; Yang P; Kattawar GW
    Appl Opt; 2010 Aug; 49(24):4641-6. PubMed ID: 20733636
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cavity ring-down spectroscopy measurement of single aerosol particle extinction. II. Extinction of light by an aerosol particle in an optical cavity excited by a cw laser.
    Miller JL; Orr-Ewing AJ
    J Chem Phys; 2007 May; 126(17):174303. PubMed ID: 17492859
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous measurement of optical scattering and extinction on dispersed aerosol samples.
    Dial KD; Hiemstra S; Thompson JE
    Anal Chem; 2010 Oct; 82(19):7885-96. PubMed ID: 20441206
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electromagnetic scattering from active objects: invisible scatterers.
    Alexopoulos NG; Uzunoglu NK
    Appl Opt; 1978 Jan; 17(2):235-9. PubMed ID: 20174389
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Study on the measurement of the atmospheric extinction of fog and rain by forward-scattering near infrared spectroscopy].
    Wang M; Liu WQ; Lu YH; Zhao XS; Song BC; Zhang YJ; Wang YP; Lian CH; Chen J; Cheng Y; Liu JG; Wei QN
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Aug; 28(8):1776-80. PubMed ID: 18975801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Absorption and scattering of light by Pt, Pd, Ag, and Au nanodisks: absolute cross sections and branching ratios.
    Langhammer C; Kasemo B; Zorić I
    J Chem Phys; 2007 May; 126(19):194702. PubMed ID: 17523823
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicted light scattering from particles observed in human age-related nuclear cataracts using mie scattering theory.
    Costello MJ; Johnsen S; Gilliland KO; Freel CD; Fowler WC
    Invest Ophthalmol Vis Sci; 2007 Jan; 48(1):303-12. PubMed ID: 17197547
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Propagation of a 10.6-micro, Laser Through a Cloud Including Droplet Vaporization.
    Glickler SL
    Appl Opt; 1971 Mar; 10(3):644-50. PubMed ID: 20094502
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scattering of a transversely confined Neumann beam by a spherical particle.
    Lock JA
    J Opt Soc Am A Opt Image Sci Vis; 2011 Dec; 28(12):2577-87. PubMed ID: 22193271
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Remark about the notation used for calculating the electromagnetic field scattered by a spherical particle.
    Shifrin KS; Zolotov IG
    Appl Opt; 1993 Sep; 32(27):5397-8. PubMed ID: 20856349
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generalization of the optical theorem for light scattering from a particle at a planar interface.
    Small A; Fung J; Manoharan VN
    J Opt Soc Am A Opt Image Sci Vis; 2013 Dec; 30(12):2519-25. PubMed ID: 24323012
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Equivalence of expressions for the acoustic scattering of a progressive high-order Bessel beam by an elastic sphere.
    Mitri FG
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 May; 56(5):1100-3. PubMed ID: 19473927
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Excitation localization principle for spherical microcavities.
    Lin HB; Eversole JD; Campillo AJ; Barton JP
    Opt Lett; 1998 Dec; 23(24):1921-3. PubMed ID: 18091956
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Particle sizing by means of the forward scattering lobe.
    Hodkinson JR
    Appl Opt; 1966 May; 5(5):839-44. PubMed ID: 20048958
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Light scattering by optically soft large particles of arbitrary shape.
    Malinka AV
    J Opt Soc Am A Opt Image Sci Vis; 2011 Oct; 28(10):2086-90. PubMed ID: 21979513
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.