These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 2201684)
1. Metal binding to DNA polymerase I, its large fragment, and two 3',5'-exonuclease mutants of the large fragment. Mullen GP; Serpersu EH; Ferrin LJ; Loeb LA; Mildvan AS J Biol Chem; 1990 Aug; 265(24):14327-34. PubMed ID: 2201684 [TBL] [Abstract][Full Text] [Related]
2. Kinetic and magnetic resonance studies of the role of metal ions in the mechanism of Escherichia coli GDP-mannose mannosyl hydrolase, an unusual nudix enzyme. Legler PM; Lee HC; Peisach J; Mildvan AS Biochemistry; 2002 Apr; 41(14):4655-68. PubMed ID: 11926828 [TBL] [Abstract][Full Text] [Related]
3. The 3'-5' exonuclease of DNA polymerase I of Escherichia coli: contribution of each amino acid at the active site to the reaction. Derbyshire V; Grindley ND; Joyce CM EMBO J; 1991 Jan; 10(1):17-24. PubMed ID: 1989882 [TBL] [Abstract][Full Text] [Related]
4. Substrate and DNA binding to a 50-residue peptide fragment of DNA polymerase I. Comparison with the enzyme. Mullen GP; Shenbagamurthi P; Mildvan AS J Biol Chem; 1989 Nov; 264(33):19637-47. PubMed ID: 2684960 [TBL] [Abstract][Full Text] [Related]
5. Dual divalent cation requirement of the MutT dGTPase. Kinetic and magnetic resonance studies of the metal and substrate complexes. Frick DN; Weber DJ; Gillespie JR; Bessman MJ; Mildvan AS J Biol Chem; 1994 Jan; 269(3):1794-803. PubMed ID: 8294428 [TBL] [Abstract][Full Text] [Related]
6. Metal requirements of a diadenosine pyrophosphatase from Bartonella bacilliformis: magnetic resonance and kinetic studies of the role of Mn2+. Conyers GB; Wu G; Bessman MJ; Mildvan AS Biochemistry; 2000 Mar; 39(9):2347-54. PubMed ID: 10694402 [TBL] [Abstract][Full Text] [Related]
7. Magnetic resonance and kinetic studies of the role of the divalent cation activator of RNA polymerase from Escherichia coli. Koren R; Mildvan S Biochemistry; 1977 Jan; 16(2):241-9. PubMed ID: 189795 [TBL] [Abstract][Full Text] [Related]
8. Elucidation of the metal-binding properties of the Klenow fragment of Escherichia coli polymerase I and bacteriophage T4 DNA polymerase by lanthanide(III) luminescence spectroscopy. Frey MW; Frey ST; Horrocks WD; Kaboord BF; Benkovic SJ Chem Biol; 1996 May; 3(5):393-403. PubMed ID: 8807868 [TBL] [Abstract][Full Text] [Related]
9. A domain of the Klenow fragment of Escherichia coli DNA polymerase I has polymerase but no exonuclease activity. Freemont PS; Ollis DL; Steitz TA; Joyce CM Proteins; 1986 Sep; 1(1):66-73. PubMed ID: 3329725 [TBL] [Abstract][Full Text] [Related]
10. Effects of mutations on the partitioning of DNA substrates between the polymerase and 3'-5' exonuclease sites of DNA polymerase I (Klenow fragment). Lam WC; Van der Schans EJ; Joyce CM; Millar DP Biochemistry; 1998 Feb; 37(6):1513-22. PubMed ID: 9484221 [TBL] [Abstract][Full Text] [Related]
11. Asp537 and Asp812 in bacteriophage T7 RNA polymerase as metal ion-binding sites studied by EPR, flow-dialysis, and transcription. Woody AY; Eaton SS; Osumi-Davis PA; Woody RW Biochemistry; 1996 Jan; 35(1):144-52. PubMed ID: 8555168 [TBL] [Abstract][Full Text] [Related]
12. Magnetic resonance and kinetic studies of the mechanism of membrane-bound sodium and potassium ion- activated adenosine triphosphatase. Grisham CM; Mildvan AS J Supramol Struct; 1975; 3(3):304-13. PubMed ID: 171521 [TBL] [Abstract][Full Text] [Related]
13. Structures of normal single-stranded DNA and deoxyribo-3'-S-phosphorothiolates bound to the 3'-5' exonucleolytic active site of DNA polymerase I from Escherichia coli. Brautigam CA; Sun S; Piccirilli JA; Steitz TA Biochemistry; 1999 Jan; 38(2):696-704. PubMed ID: 9888810 [TBL] [Abstract][Full Text] [Related]
14. Binding of captan to DNA polymerase I from Escherichia coli and the concomitant effect on 5'----3' exonuclease activity. Freeman-Wittig MJ; Welch W; Lewis RA Biochemistry; 1989 Apr; 28(7):2843-9. PubMed ID: 2663061 [TBL] [Abstract][Full Text] [Related]
15. Nuclear Overhauser effect studies of the conformations and binding site environments of deoxynucleoside triphosphate substrates bound to DNA polymerase I and its large fragment. Ferrin LJ; Mildvan AS Biochemistry; 1985 Nov; 24(24):6904-13. PubMed ID: 3907705 [TBL] [Abstract][Full Text] [Related]
16. Mechanism of malic enzyme from pigeon liver. Magnetic resonance and kinetic studies of the role of Mn2+. Hsu RY; Mildvan AS; Chang G; Fung C J Biol Chem; 1976 Nov; 251(21):6574-83. PubMed ID: 988026 [TBL] [Abstract][Full Text] [Related]
17. The J-helix of Escherichia coli DNA polymerase I (Klenow fragment) regulates polymerase and 3'- 5'-exonuclease functions. Tuske S; Singh K; Kaushik N; Modak MJ J Biol Chem; 2000 Aug; 275(31):23759-68. PubMed ID: 10818095 [TBL] [Abstract][Full Text] [Related]
18. Biochemical analysis of point mutations in the 5'-3' exonuclease of DNA polymerase I of Streptococcus pneumoniae. Functional and structural implications. Amblar M; de Lacoba MG; Corrales MA; Lopez P J Biol Chem; 2001 Jun; 276(22):19172-81. PubMed ID: 11278428 [TBL] [Abstract][Full Text] [Related]
19. Hydrolysis of the 5'-p-nitrophenyl ester of TMP by the proofreading exonuclease (epsilon) subunit of Escherichia coli DNA polymerase III. Hamdan S; Bulloch EM; Thompson PR; Beck JL; Yang JY; Crowther JA; Lilley PE; Carr PD; Ollis DL; Brown SE; Dixon NE Biochemistry; 2002 Apr; 41(16):5266-75. PubMed ID: 11955076 [TBL] [Abstract][Full Text] [Related]
20. Structural principles for the inhibition of the 3'-5' exonuclease activity of Escherichia coli DNA polymerase I by phosphorothioates. Brautigam CA; Steitz TA J Mol Biol; 1998 Mar; 277(2):363-77. PubMed ID: 9514742 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]