These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 22016878)

  • 1. Sensing ligand binding to a clinically relevant lectin by tryptophan fluorescence anisotropy.
    Göhler A; Büchner C; André S; Doose S; Kaltner H; Gabius HJ
    Analyst; 2011 Dec; 136(24):5270-6. PubMed ID: 22016878
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of homodimeric avian and human galectins by two methods based on fluorescence spectroscopy: different structural alterations upon oxidation and ligand binding.
    Göhler A; Büchner C; André S; Sören Doose ; Kaltner H; Gabius HJ
    Biochimie; 2012 Dec; 94(12):2649-55. PubMed ID: 22884463
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescence polarization as an analytical tool to evaluate galectin-ligand interactions.
    Sörme P; Kahl-Knutsson B; Huflejt M; Nilsson UJ; Leffler H
    Anal Biochem; 2004 Nov; 334(1):36-47. PubMed ID: 15464951
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational studies of human galectin-1: role of conserved tryptophan residue in stacking interaction with carbohydrate ligands.
    Meynier C; Guerlesquin F; Roche P
    J Biomol Struct Dyn; 2009 Aug; 27(1):49-58. PubMed ID: 19492862
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unique conformer selection of human growth-regulatory lectin galectin-1 for ganglioside GM1 versus bacterial toxins.
    Siebert HC; André S; Lu SY; Frank M; Kaltner H; van Kuik JA; Korchagina EY; Bovin N; Tajkhorshid E; Kaptein R; Vliegenthart JF; von der Lieth CW; Jiménez-Barbero J; Kopitz J; Gabius HJ
    Biochemistry; 2003 Dec; 42(50):14762-73. PubMed ID: 14674750
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Galectin-loaded cells as a platform for the profiling of lectin specificity by fluorescent neoglycoconjugates: a case study on galectins-1 and -3 and the impact of assay setting.
    Rapoport EM; André S; Kurmyshkina OV; Pochechueva TV; Severov VV; Pazynina GV; Gabius HJ; Bovin NV
    Glycobiology; 2008 Apr; 18(4):315-24. PubMed ID: 18256179
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monovalent interactions of galectin-1.
    Salomonsson E; Larumbe A; Tejler J; Tullberg E; Rydberg H; Sundin A; Khabut A; Frejd T; Lobsanov YD; Rini JM; Nilsson UJ; Leffler H
    Biochemistry; 2010 Nov; 49(44):9518-32. PubMed ID: 20873803
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Persubstituted cyclodextrin-based glycoclusters as inhibitors of protein-carbohydrate recognition using purified plant and mammalian lectins and wild-type and lectin-gene-transfected tumor cells as targets.
    André S; Kaltner H; Furuike T; Nishimura S; Gabius HJ
    Bioconjug Chem; 2004; 15(1):87-98. PubMed ID: 14733587
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NMR investigations of protein-carbohydrate interactions: studies on the relevance of Trp/Tyr variations in lectin binding sites as deduced from titration microcalorimetry and NMR studies on hevein domains. Determination of the NMR structure of the complex between pseudohevein and N,N',N"-triacetylchitotriose.
    Asensio JL; Siebert HC; von Der Lieth CW; Laynez J; Bruix M; Soedjanaamadja UM; Beintema JJ; Cañada FJ; Gabius HJ; Jiménez-Barbero J
    Proteins; 2000 Aug; 40(2):218-36. PubMed ID: 10842338
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lactose binding to galectin-1 modulates structural dynamics, increases conformational entropy, and occurs with apparent negative cooperativity.
    Nesmelova IV; Ermakova E; Daragan VA; Pang M; Menéndez M; Lagartera L; Solís D; Baum LG; Mayo KH
    J Mol Biol; 2010 Apr; 397(5):1209-30. PubMed ID: 20184898
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of the galectin-1 carbohydrate recognition domain in terms of solvent occupancy.
    Di Lella S; Martí MA; Alvarez RM; Estrin DA; Ricci JC
    J Phys Chem B; 2007 Jun; 111(25):7360-6. PubMed ID: 17523619
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Linking the structure and thermal stability of beta-galactoside-binding protein galectin-1 to ligand binding and dimerization equilibria.
    Di Lella S; Martí MA; Croci DO; Guardia CM; Díaz-Ricci JC; Rabinovich GA; Caramelo JJ; Estrin DA
    Biochemistry; 2010 Sep; 49(35):7652-8. PubMed ID: 20666428
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering the Ligand Specificity of the Human Galectin-1 by Incorporation of Tryptophan Analogues.
    Tobola F; Lepšík M; Zia SR; Leffler H; Nilsson UJ; Blixt O; Imberty A; Wiltschi B
    Chembiochem; 2022 Mar; 23(5):e202100593. PubMed ID: 34978765
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Growth-regulatory human galectin-1: crystallographic characterisation of the structural changes induced by single-site mutations and their impact on the thermodynamics of ligand binding.
    López-Lucendo MF; Solís D; André S; Hirabayashi J; Kasai K; Kaltner H; Gabius HJ; Romero A
    J Mol Biol; 2004 Oct; 343(4):957-70. PubMed ID: 15476813
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calix[n]arene-based glycoclusters: bioactivity of thiourea-linked galactose/lactose moieties as inhibitors of binding of medically relevant lectins to a glycoprotein and cell-surface glycoconjugates and selectivity among human adhesion/growth-regulatory galectins.
    André S; Sansone F; Kaltner H; Casnati A; Kopitz J; Gabius HJ; Ungaro R
    Chembiochem; 2008 Jul; 9(10):1649-61. PubMed ID: 18509838
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An integrated computational analysis of the structure, dynamics, and ligand binding interactions of the human galectin network.
    Guardia CM; Gauto DF; Di Lella S; Rabinovich GA; Martí MA; Estrin DA
    J Chem Inf Model; 2011 Aug; 51(8):1918-30. PubMed ID: 21702482
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessing the inhibitory potency of galectin ligands identified from combinatorial (glyco)peptide libraries using surface plasmon resonance spectroscopy.
    Maljaars CE; André S; Halkes KM; Gabius HJ; Kamerling JP
    Anal Biochem; 2008 Jul; 378(2):190-6. PubMed ID: 18471425
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermodynamic binding studies of bivalent oligosaccharides to galectin-1, galectin-3, and the carbohydrate recognition domain of galectin-3.
    Ahmad N; Gabius HJ; Sabesan S; Oscarson S; Brewer CF
    Glycobiology; 2004 Sep; 14(9):817-25. PubMed ID: 15148296
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural analysis of the human galectin-9 N-terminal carbohydrate recognition domain reveals unexpected properties that differ from the mouse orthologue.
    Nagae M; Nishi N; Nakamura-Tsuruta S; Hirabayashi J; Wakatsuki S; Kato R
    J Mol Biol; 2008 Jan; 375(1):119-35. PubMed ID: 18005988
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Galectin fingerprinting by immuno- and lectin histochemistry in cutaneous lymphoma.
    Wollina U; Graefe T; Feldrappe S; André S; Wasano K; Kaltner H; Zick Y; Gabius HJ
    J Cancer Res Clin Oncol; 2002 Feb; 128(2):103-10. PubMed ID: 11862481
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.