These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 2201688)
1. Identification of residues critical for the polymerase activity of the Klenow fragment of DNA polymerase I from Escherichia coli. Polesky AH; Steitz TA; Grindley ND; Joyce CM J Biol Chem; 1990 Aug; 265(24):14579-91. PubMed ID: 2201688 [TBL] [Abstract][Full Text] [Related]
2. Deoxynucleoside triphosphate and pyrophosphate binding sites in the catalytically competent ternary complex for the polymerase reaction catalyzed by DNA polymerase I (Klenow fragment). Astatke M; Grindley ND; Joyce CM J Biol Chem; 1995 Jan; 270(4):1945-54. PubMed ID: 7829532 [TBL] [Abstract][Full Text] [Related]
3. Side chains involved in catalysis of the polymerase reaction of DNA polymerase I from Escherichia coli. Polesky AH; Dahlberg ME; Benkovic SJ; Grindley ND; Joyce CM J Biol Chem; 1992 Apr; 267(12):8417-28. PubMed ID: 1569092 [TBL] [Abstract][Full Text] [Related]
4. How E. coli DNA polymerase I (Klenow fragment) distinguishes between deoxy- and dideoxynucleotides. Astatke M; Grindley ND; Joyce CM J Mol Biol; 1998 Apr; 278(1):147-65. PubMed ID: 9571040 [TBL] [Abstract][Full Text] [Related]
5. Functional consequences and exonuclease kinetic parameters of point mutations in bacteriophage T4 DNA polymerase. Abdus Sattar AK; Lin TC; Jones C; Konigsberg WH Biochemistry; 1996 Dec; 35(51):16621-9. PubMed ID: 8987997 [TBL] [Abstract][Full Text] [Related]
6. Escherichia coli DNA polymerase I (Klenow fragment) uses a hydrogen-bonding fork from Arg668 to the primer terminus and incoming deoxynucleotide triphosphate to catalyze DNA replication. Meyer AS; Blandino M; Spratt TE J Biol Chem; 2004 Aug; 279(32):33043-6. PubMed ID: 15210707 [TBL] [Abstract][Full Text] [Related]
7. Presence of 18-A long hydrogen bond track in the active site of Escherichia coli DNA polymerase I (Klenow fragment). Its requirement in the stabilization of enzyme-template-primer complex. Singh K; Modak MJ J Biol Chem; 2003 Mar; 278(13):11289-302. PubMed ID: 12522214 [TBL] [Abstract][Full Text] [Related]
8. Point mutations which drastically affect the polymerization activity of encephalomyocarditis virus RNA-dependent RNA polymerase correspond to the active site of Escherichia coli DNA polymerase I. Sankar S; Porter AG J Biol Chem; 1992 May; 267(14):10168-76. PubMed ID: 1315753 [TBL] [Abstract][Full Text] [Related]
9. The 3'-5' exonuclease of DNA polymerase I of Escherichia coli: contribution of each amino acid at the active site to the reaction. Derbyshire V; Grindley ND; Joyce CM EMBO J; 1991 Jan; 10(1):17-24. PubMed ID: 1989882 [TBL] [Abstract][Full Text] [Related]
10. Fidelity of mispair formation and mispair extension is dependent on the interaction between the minor groove of the primer terminus and Arg668 of DNA polymerase I of Escherichia coli. McCain MD; Meyer AS; Schultz SS; Glekas A; Spratt TE Biochemistry; 2005 Apr; 44(15):5647-59. PubMed ID: 15823023 [TBL] [Abstract][Full Text] [Related]
11. Site directed mutagenesis of DNA polymerase I (Klenow) from Escherichia coli. The significance of Arg682 in catalysis. Pandey VN; Kaushik N; Sanzgiri RP; Patil MS; Modak MJ; Barik S Eur J Biochem; 1993 May; 214(1):59-65. PubMed ID: 8508807 [TBL] [Abstract][Full Text] [Related]
12. Determinants of DNA mismatch recognition within the polymerase domain of the Klenow fragment. Thompson EH; Bailey MF; van der Schans EJ; Joyce CM; Millar DP Biochemistry; 2002 Jan; 41(3):713-22. PubMed ID: 11790092 [TBL] [Abstract][Full Text] [Related]
13. Identification of hydrogen bonds between Escherichia coli DNA polymerase I (Klenow fragment) and the minor groove of DNA by amino acid substitution of the polymerase and atomic substitution of the DNA. Spratt TE Biochemistry; 2001 Mar; 40(9):2647-52. PubMed ID: 11258875 [TBL] [Abstract][Full Text] [Related]
14. The J-helix of Escherichia coli DNA polymerase I (Klenow fragment) regulates polymerase and 3'- 5'-exonuclease functions. Tuske S; Singh K; Kaushik N; Modak MJ J Biol Chem; 2000 Aug; 275(31):23759-68. PubMed ID: 10818095 [TBL] [Abstract][Full Text] [Related]
15. Suppression of ColE1 high-copy-number mutants by mutations in the polA gene of Escherichia coli. Yang YL; Polisky B J Bacteriol; 1993 Jan; 175(2):428-37. PubMed ID: 8419292 [TBL] [Abstract][Full Text] [Related]
16. Significance of the O-helix residues of Escherichia coli DNA polymerase I in DNA synthesis: dynamics of the dNTP binding pocket. Kaushik N; Pandey VN; Modak MJ Biochemistry; 1996 Jun; 35(22):7256-66. PubMed ID: 8679555 [TBL] [Abstract][Full Text] [Related]
17. Photoaffinity labeling of the Klenow fragment with 8-azido-dATP. Rush J; Konigsberg WH J Biol Chem; 1990 Mar; 265(9):4821-7. PubMed ID: 2180951 [TBL] [Abstract][Full Text] [Related]
18. Mutational studies of human DNA polymerase alpha. Identification of residues critical for deoxynucleotide binding and misinsertion fidelity of DNA synthesis. Dong Q; Copeland WC; Wang TS J Biol Chem; 1993 Nov; 268(32):24163-74. PubMed ID: 8226963 [TBL] [Abstract][Full Text] [Related]
19. Phe 771 of Escherichia coli DNA polymerase I (Klenow fragment) is the major site for the interaction with the template overhang and the stabilization of the pre-polymerase ternary complex. Srivastava A; Singh K; Modak MJ Biochemistry; 2003 Apr; 42(13):3645-54. PubMed ID: 12667054 [TBL] [Abstract][Full Text] [Related]
20. A domain of the Klenow fragment of Escherichia coli DNA polymerase I has polymerase but no exonuclease activity. Freemont PS; Ollis DL; Steitz TA; Joyce CM Proteins; 1986 Sep; 1(1):66-73. PubMed ID: 3329725 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]