These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 22017204)

  • 1. All-carbon molecular tunnel junctions.
    Yan H; Bergren AJ; McCreery RL
    J Am Chem Soc; 2011 Nov; 133(47):19168-77. PubMed ID: 22017204
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electron transport and redox reactions in carbon-based molecular electronic junctions.
    McCreery RL; Wu J; Kalakodimi RP
    Phys Chem Chem Phys; 2006 Jun; 8(22):2572-90. PubMed ID: 16738711
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular electronics using diazonium-derived adlayers on carbon with Cu top contacts: critical analysis of metal oxides and filaments.
    Bergren AJ; Harris KD; Deng F; McCreery RL
    J Phys Condens Matter; 2008 Sep; 20(37):374117. PubMed ID: 21694424
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon/molecule/metal molecular electronic junctions: the importance of "contacts".
    McCreery RL; Viswanathan U; Kalakodimi RP; Nowak AM
    Faraday Discuss; 2006; 131():33-43; discussion 91-109. PubMed ID: 16512363
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular rectification and conductance switching in carbon-based molecular junctions by structural rearrangement accompanying electron injection.
    McCreery R; Dieringer J; Solak AO; Snyder B; Nowak AM; McGovern WR; DuVall S
    J Am Chem Soc; 2003 Sep; 125(35):10748-58. PubMed ID: 12940761
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In situ Raman spectroscopy of bias-induced structural changes in nitroazobenzene molecular electronic junctions.
    Nowak AM; McCreery RL
    J Am Chem Soc; 2004 Dec; 126(50):16621-31. PubMed ID: 15600368
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Redox-driven conductance switching via filament formation and dissolution in carbon/molecule/TiO2/Ag molecular electronic junctions.
    Ssenyange S; Yan H; McCreery RL
    Langmuir; 2006 Dec; 22(25):10689-96. PubMed ID: 17129047
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strong effects of molecular structure on electron transport in carbon/molecule/copper electronic junctions.
    Anariba F; Steach JK; McCreery RL
    J Phys Chem B; 2005 Jun; 109(22):11163-72. PubMed ID: 16852362
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfabrication and integration of diazonium-based aromatic molecular junctions.
    Ru J; Szeto B; Bonifas A; McCreery RL
    ACS Appl Mater Interfaces; 2010 Dec; 2(12):3693-701. PubMed ID: 21121640
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbon-Based Molecular Junctions for Practical Molecular Electronics.
    McCreery RL
    Acc Chem Res; 2022 Oct; 55(19):2766-2779. PubMed ID: 36137180
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electron-beam evaporated silicon as a top contact for molecular electronic device fabrication.
    Kumar R; Yan H; McCreery RL; Bergren AJ
    Phys Chem Chem Phys; 2011 Aug; 13(32):14318-24. PubMed ID: 21701710
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anomalous tunneling in carbon/alkane/TiO(2)/gold molecular electronic junctions: energy level alignment at the metal/semiconductor interface.
    Yan H; McCreery RL
    ACS Appl Mater Interfaces; 2009 Feb; 1(2):443-51. PubMed ID: 20353235
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robust All-Carbon Molecular Junctions on Flexible or Semi-Transparent Substrates Using "Process-Friendly" Fabrication.
    Morteza Najarian A; Szeto B; Tefashe UM; McCreery RL
    ACS Nano; 2016 Sep; 10(9):8918-28. PubMed ID: 27529117
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of carbon/nitroazobenzene/titanium molecular electronic junctions with photoelectron and Raman spectroscopy.
    Nowak AM; McCreery RL
    Anal Chem; 2004 Feb; 76(4):1089-97. PubMed ID: 14961743
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-walled carbon nanotube based molecular switch tunnel junctions.
    Diehl MR; Steuerman DW; Tseng HR; Vignon SA; Star A; Celestre PC; Stoddart JF; Heath JR
    Chemphyschem; 2003 Dec; 4(12):1335-9. PubMed ID: 14714382
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conducting polymer memory devices based on dynamic doping.
    Barman S; Deng F; McCreery RL
    J Am Chem Soc; 2008 Aug; 130(33):11073-81. PubMed ID: 18646749
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurement of voltage-dependent electronic transport across amine-linked single-molecular-wire junctions.
    Widawsky JR; Kamenetska M; Klare J; Nuckolls C; Steigerwald ML; Hybertsen MS; Venkataraman L
    Nanotechnology; 2009 Oct; 20(43):434009. PubMed ID: 19801764
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bilayer molecular electronics: all-carbon electronic junctions containing molecular bilayers made with "click" chemistry.
    Sayed SY; Bayat A; Kondratenko M; Leroux Y; Hapiot P; McCreery RL
    J Am Chem Soc; 2013 Sep; 135(35):12972-5. PubMed ID: 23941647
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Copper-metal deposition on self assembled monolayer for making top contacts in molecular electronic devices.
    Seitz O; Dai M; Aguirre-Tostado FS; Wallace RM; Chabal YJ
    J Am Chem Soc; 2009 Dec; 131(50):18159-67. PubMed ID: 19924992
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Implications and applications of current-induced dynamics in molecular junctions.
    Jorn R; Seideman T
    Acc Chem Res; 2010 Sep; 43(9):1186-94. PubMed ID: 20465221
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.