These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 22017244)

  • 1. Powerful amide synthesis from alcohols and amines under aerobic conditions catalyzed by gold or gold/iron, -nickel or -cobalt nanoparticles.
    Soulé JF; Miyamura H; Kobayashi S
    J Am Chem Soc; 2011 Nov; 133(46):18550-3. PubMed ID: 22017244
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct amidation from alcohols and amines through a tandem oxidation process catalyzed by heterogeneous-polymer-incarcerated gold nanoparticles under aerobic conditions.
    Soulé JF; Miyamura H; Kobayashi S
    Chem Asian J; 2013 Nov; 8(11):2614-26. PubMed ID: 24166844
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tandem oxidative processes catalyzed by polymer-incarcerated multimetallic nanoclusters with molecular oxygen.
    Miyamura H; Kobayashi S
    Acc Chem Res; 2014 Apr; 47(4):1054-66. PubMed ID: 24661043
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Size of gold nanoparticles driving selective amide synthesis through aerobic condensation of aldehydes and amines.
    Miyamura H; Min H; Soulé JF; Kobayashi S
    Angew Chem Int Ed Engl; 2015 Jun; 54(26):7564-7. PubMed ID: 26014900
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidative amide synthesis directly from alcohols with amines.
    Chen C; Hong SH
    Org Biomol Chem; 2011 Jan; 9(1):20-6. PubMed ID: 21063590
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nickel nanoparticles in hydrogen transfer reactions.
    Alonso F; Riente P; Yus M
    Acc Chem Res; 2011 May; 44(5):379-91. PubMed ID: 21417317
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The "borrowing hydrogen strategy" by supported ruthenium hydroxide catalysts: synthetic scope of symmetrically and unsymmetrically substituted amines.
    Yamaguchi K; He J; Oishi T; Mizuno N
    Chemistry; 2010 Jun; 16(24):7199-207. PubMed ID: 20468035
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly efficient heterogeneous gold-catalyzed direct synthesis of tertiary and secondary amines from alcohols and urea.
    He L; Qian Y; Ding RS; Liu YM; He HY; Fan KN; Cao Y
    ChemSusChem; 2012 Apr; 5(4):621-4. PubMed ID: 22415929
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catalyst parameters determining activity and selectivity of supported gold nanoparticles for the aerobic oxidation of alcohols: the molecular reaction mechanism.
    Abad A; Corma A; García H
    Chemistry; 2008; 14(1):212-22. PubMed ID: 18038385
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective imine formation from alcohols and amines catalyzed by polymer incarcerated gold/palladium alloy nanoparticles with molecular oxygen as an oxidant.
    Soulé JF; Miyamura H; Kobayashi S
    Chem Commun (Camb); 2013 Jan; 49(4):355-7. PubMed ID: 23037545
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immobilization of cobalt(II) Schiff base complexes on polystyrene resin and a study of their catalytic activity for the aerobic oxidation of alcohols.
    Jain S; Reiser O
    ChemSusChem; 2008; 1(6):534-41. PubMed ID: 18702152
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graphite-supported gold nanoparticles as efficient catalyst for aerobic oxidation of benzylic amines to imines and N-substituted 1,2,3,4-tetrahydroisoquinolines to amides: synthetic applications and mechanistic study.
    So MH; Liu Y; Ho CM; Che CM
    Chem Asian J; 2009 Oct; 4(10):1551-61. PubMed ID: 19777526
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of surface-bound intermediates in the oxygen-assisted synthesis of amides by metallic silver and gold.
    Siler CG; Xu B; Madix RJ; Friend CM
    J Am Chem Soc; 2012 Aug; 134(30):12604-10. PubMed ID: 22770474
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metal-catalysed approaches to amide bond formation.
    Allen CL; Williams JM
    Chem Soc Rev; 2011 Jul; 40(7):3405-15. PubMed ID: 21416075
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Supported gold nanoparticles as catalysts for organic reactions.
    Corma A; Garcia H
    Chem Soc Rev; 2008 Sep; 37(9):2096-126. PubMed ID: 18762848
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanistic insights into the one-pot synthesis of propargylamines from terminal alkynes and amines in chlorinated solvents catalyzed by gold compounds and nanoparticles.
    Aguilar D; Contel M; Urriolabeitia EP
    Chemistry; 2010 Aug; 16(30):9287-96. PubMed ID: 20583055
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The mystery of gold's chemical activity: local bonding, morphology and reactivity of atomic oxygen.
    Baker TA; Liu X; Friend CM
    Phys Chem Chem Phys; 2011 Jan; 13(1):34-46. PubMed ID: 21103516
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gold-platinum bimetallic clusters for aerobic oxidation of alcohols under ambient conditions.
    Miyamura H; Matsubara R; Kobayashi S
    Chem Commun (Camb); 2008 May; (17):2031-3. PubMed ID: 18536811
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthetic scope and mechanistic studies of Ru(OH)x/Al2O3-catalyzed heterogeneous hydrogen-transfer reactions.
    Yamaguchi K; Koike T; Kotani M; Matsushita M; Shinachi S; Mizuno N
    Chemistry; 2005 Nov; 11(22):6574-82. PubMed ID: 16092142
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemoselective synthesis of substituted imines, secondary amines, and beta-amino carbonyl compounds from nitroaromatics through cascade reactions on gold catalysts.
    Santos LL; Serna P; Corma A
    Chemistry; 2009 Aug; 15(33):8196-203. PubMed ID: 19609994
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.