BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 22017465)

  • 1. Brain reinforcement system function is ghrelin dependent: studies in the rat using pharmacological fMRI and intracranial self-stimulation.
    Wellman PJ; Clifford PS; Rodriguez JA; Hughes S; Di Francesco C; Melotto S; Tessari M; Corsi M; Bifone A; Gozzi A
    Addict Biol; 2012 Sep; 17(5):908-19. PubMed ID: 22017465
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Attenuation of cocaine-induced locomotor sensitization in rats sustaining genetic or pharmacologic antagonism of ghrelin receptors.
    Clifford PS; Rodriguez J; Schul D; Hughes S; Kniffin T; Hart N; Eitan S; Brunel L; Fehrentz JA; Martinez J; Wellman PJ
    Addict Biol; 2012 Nov; 17(6):956-63. PubMed ID: 21790898
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ghrelin and ghrelin receptor modulation of psychostimulant action.
    Wellman PJ; Clifford PS; Rodriguez JA
    Front Neurosci; 2013 Sep; 7():171. PubMed ID: 24093007
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pharmacologic antagonism of ghrelin receptors attenuates development of nicotine induced locomotor sensitization in rats.
    Wellman PJ; Clifford PS; Rodriguez J; Hughes S; Eitan S; Brunel L; Fehrentz JA; Martinez J
    Regul Pept; 2011 Dec; 172(1-3):77-80. PubMed ID: 21903141
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The GHR-R antagonist JMV 2959 neither induces malaise nor alters the malaise property of LiCl in the adult male rat.
    Rodriguez JA; Fehrentz JA; Martinez J; Ben Haj Salah K; Wellman PJ
    Physiol Behav; 2018 Jan; 183():46-48. PubMed ID: 29056353
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of food restriction and cocaine on locomotion in ghrelin- and ghrelin-receptor knockout mice.
    Clifford S; Zeckler RA; Buckman S; Thompson J; Hart N; Wellman PJ; Smith RG
    Addict Biol; 2011 Jul; 16(3):386-92. PubMed ID: 21054685
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring the Behavioral and Metabolic Phenotype Generated by Re-Introduction of the Ghrelin Receptor in the Ventral Tegmental Area.
    Skov LJ; Jensen M; Christiansen SH; Ratner C; Woldbye DPD; Holst B
    Int J Mol Sci; 2017 Apr; 18(5):. PubMed ID: 28445429
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of ghrelin in food reward: impact of ghrelin on sucrose self-administration and mesolimbic dopamine and acetylcholine receptor gene expression.
    Skibicka KP; Hansson C; Egecioglu E; Dickson SL
    Addict Biol; 2012 Jan; 17(1):95-107. PubMed ID: 21309956
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of intraamygdaloid microinjections of acylated-ghrelin on liquid food intake of rats.
    Tóth K; László K; Bagi EE; Lukács E; Lénárd L
    Brain Res Bull; 2008 Sep; 77(2-3):105-11. PubMed ID: 18662750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pharmacological demarcation of the growth hormone, gut motility and feeding effects of ghrelin using a novel ghrelin receptor agonist.
    Fraser GL; Hoveyda HR; Tannenbaum GS
    Endocrinology; 2008 Dec; 149(12):6280-8. PubMed ID: 18719021
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression of the gene encoding the ghrelin receptor in rats selected for differential alcohol preference.
    Landgren S; Engel JA; Hyytiä P; Zetterberg H; Blennow K; Jerlhag E
    Behav Brain Res; 2011 Aug; 221(1):182-8. PubMed ID: 21392542
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Concomitant release of ventral tegmental acetylcholine and accumbal dopamine by ghrelin in rats.
    Jerlhag E; Janson AC; Waters S; Engel JA
    PLoS One; 2012; 7(11):e49557. PubMed ID: 23166710
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dopamine receptor sub-types involvement in nucleus accumbens and ventral tegmentum but not in medial prefrontal cortex: on self-stimulation of lateral hypothalamus and ventral mesencephalon.
    Singh J; Desiraju T; Raju TR
    Behav Brain Res; 1997 Jul; 86(2):171-9. PubMed ID: 9134152
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ghrelin regulates the hypothalamic-pituitary-adrenal axis and restricts anxiety after acute stress.
    Spencer SJ; Xu L; Clarke MA; Lemus M; Reichenbach A; Geenen B; Kozicz T; Andrews ZB
    Biol Psychiatry; 2012 Sep; 72(6):457-65. PubMed ID: 22521145
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Blockade of central nicotine acetylcholine receptor signaling attenuate ghrelin-induced food intake in rodents.
    Dickson SL; Hrabovszky E; Hansson C; Jerlhag E; Alvarez-Crespo M; Skibicka KP; Molnar CS; Liposits Z; Engel JA; Egecioglu E
    Neuroscience; 2010 Dec; 171(4):1180-6. PubMed ID: 20933579
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Motivation to obtain preferred foods is enhanced by ghrelin in the ventral tegmental area.
    King SJ; Isaacs AM; O'Farrell E; Abizaid A
    Horm Behav; 2011 Nov; 60(5):572-80. PubMed ID: 21872601
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ghrelin and GHS-R1A signaling within the ventral and laterodorsal tegmental area regulate sexual behavior in sexually naïve male mice.
    Prieto-Garcia L; Egecioglu E; Studer E; Westberg L; Jerlhag E
    Psychoneuroendocrinology; 2015 Dec; 62():392-402. PubMed ID: 26398679
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GSK1614343, a novel ghrelin receptor antagonist, produces an unexpected increase of food intake and body weight in rodents and dogs.
    Costantini VJ; Vicentini E; Sabbatini FM; Valerio E; Lepore S; Tessari M; Sartori M; Michielin F; Melotto S; Bifone A; Pich EM; Corsi M
    Neuroendocrinology; 2011; 94(2):158-68. PubMed ID: 21778696
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Systemic administration of ghrelin increases extracellular dopamine in the shell but not the core subdivision of the nucleus accumbens.
    Quarta D; Di Francesco C; Melotto S; Mangiarini L; Heidbreder C; Hedou G
    Neurochem Int; 2009 Feb; 54(2):89-94. PubMed ID: 19118592
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hypothalamic κ-opioid receptor modulates the orexigenic effect of ghrelin.
    Romero-Picó A; Vázquez MJ; González-Touceda D; Folgueira C; Skibicka KP; Alvarez-Crespo M; Van Gestel MA; Velásquez DA; Schwarzer C; Herzog H; López M; Adan RA; Dickson SL; Diéguez C; Nogueiras R
    Neuropsychopharmacology; 2013 Jun; 38(7):1296-307. PubMed ID: 23348063
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.