BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 22017479)

  • 1. Potential antifouling strategies for marine finfish aquaculture: the effects of physical and chemical treatments on the settlement and survival of the hydroid Ectopleura larynx.
    Guenther J; Fitridge I; Misimi E
    Biofouling; 2011 Oct; 27(9):1033-42. PubMed ID: 22017479
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The fouling hydroid Ectopleura larynx: a lack of effect of next generation antifouling technologies.
    Bloecher N; de Nys R; Poole AJ; Guenther J
    Biofouling; 2013; 29(3):237-46. PubMed ID: 23438941
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Drag of Clean and Fouled Net Panels--Measurements and Parameterization of Fouling.
    Gansel LC; Plew DR; Endresen PC; Olsen AI; Misimi E; Guenther J; Jensen Ø
    PLoS One; 2015; 10(7):e0131051. PubMed ID: 26151907
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Successional dynamics of marine fouling hydroids (Cnidaria: Hydrozoa) at a finfish aquaculture facility in the Mediterranean Sea.
    Martell L; Bracale R; Carrion SA; Giangrande A; Purcell JE; Lezzi M; Gravili C; Piraino S; Boero F
    PLoS One; 2018; 13(4):e0195352. PubMed ID: 29608614
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ruinous resident: the hydroid Ectopleura crocea negatively affects suspended culture of the mussel Mytilus galloprovincialis.
    Fitridge I; Keough MJ
    Biofouling; 2013; 29(2):119-31. PubMed ID: 23327223
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catch my drift? Between-farm dispersal of biofouling waste from salmon pen net cleaning: Potential risks for fish health.
    Bloecher N; Broch OJ; Davies EJ; Pedersen MO; Floerl O
    Sci Total Environ; 2024 Jun; 928():172464. PubMed ID: 38621535
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amplified recruitment pressure of biofouling organisms in commercial salmon farms: potential causes and implications for farm management.
    Bloecher N; Floerl O; Sunde LM
    Biofouling; 2015; 31(2):163-72. PubMed ID: 25686515
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The impact and control of biofouling in marine aquaculture: a review.
    Fitridge I; Dempster T; Guenther J; de Nys R
    Biofouling; 2012; 28(7):649-69. PubMed ID: 22775076
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of cnidarian biofouling on salmon gill health and development of amoebic gill disease.
    Bloecher N; Powell M; Hytterød S; Gjessing M; Wiik-Nielsen J; Mohammad SN; Johansen J; Hansen H; Floerl O; Gjevre AG
    PLoS One; 2018; 13(7):e0199842. PubMed ID: 29979703
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metatranscriptome analysis reveals the putative venom toxin repertoire of the biofouling hydroid Ectopleura larynx.
    Lecaudey LA; Netzer R; Wibberg D; Busche T; Bloecher N
    Toxicon; 2024 Jan; 237():107556. PubMed ID: 38072317
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlling biofouling caused by the colonial hydroid Cordylophora caspia.
    Folino-Rorem NC; Indelicato J
    Water Res; 2005 Jul; 39(12):2731-7. PubMed ID: 15970305
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biofouling leads to reduced shell growth and flesh weight in the cultured mussel Mytilus galloprovincialis.
    Sievers M; Fitridge I; Dempster T; Keough MJ
    Biofouling; 2013; 29(1):97-107. PubMed ID: 23256892
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monitoring biofouling communities could reduce impacts to mussel aquaculture by allowing synchronisation of husbandry techniques with peaks in settlement.
    Sievers M; Dempster T; Fitridge I; Keough MJ
    Biofouling; 2014 Feb; 30(2):203-12. PubMed ID: 24401014
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparing biofouling control treatments for use on aquaculture nets.
    Swain G; Shinjo N
    Int J Mol Sci; 2014 Dec; 15(12):22142-54. PubMed ID: 25474085
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessing the efficacy of spray-delivered 'eco-friendly' chemicals for the control and eradication of marine fouling pests.
    Piola RF; Dunmore RA; Forrest BM
    Biofouling; 2010; 26(2):187-203. PubMed ID: 19937489
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Testing of novel net cleaning technologies for finfish aquaculture.
    Bloecher N; Frank K; Bondø M; Ribicic D; Endresen PC; Su B; Floerl O
    Biofouling; 2019 Aug; 35(7):805-817. PubMed ID: 31538816
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biofouling in marine aquaculture: a review of recent research and developments.
    Bannister J; Sievers M; Bush F; Bloecher N
    Biofouling; 2019 Jul; 35(6):631-648. PubMed ID: 31339358
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimising settlement assays of pediveligers and plantigrades of Mytilus galloprovincialis.
    Carl C; Poole AJ; Vucko MJ; Williams MR; Whalan S; de Nys R
    Biofouling; 2011 Sep; 27(8):859-68. PubMed ID: 21827335
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sea-trial verification of a novel system for monitoring biofouling and testing anti-fouling coatings in highly energetic environments targeted by the marine renewable energy industry.
    Want A; Bell MC; Harris RE; Hull MQ; Long CR; Porter JS
    Biofouling; 2021 Apr; 37(4):433-451. PubMed ID: 34121520
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aquaculture fouling: Efficacy of potassium monopersulphonate triple salt based disinfectant (Virkon® Aquatic) against Ciona intestinalis.
    Paetzold SC; Davidson J
    Biofouling; 2011 Jul; 27(6):655-65. PubMed ID: 21722037
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.