BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

328 related articles for article (PubMed ID: 2201761)

  • 1. Block of ATP-regulated and Ca2(+)-activated K+ channels in mouse pancreatic beta-cells by external tetraethylammonium and quinine.
    Bokvist K; Rorsman P; Smith PA
    J Physiol; 1990 Apr; 423():327-42. PubMed ID: 2201761
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of external tetraethylammonium ions and quinine on delayed rectifying K+ channels in mouse pancreatic beta-cells.
    Bokvist K; Rorsman P; Smith PA
    J Physiol; 1990 Apr; 423():311-25. PubMed ID: 2201760
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Specificity of tetraethylammonium and quinine for three K channels in insulin-secreting cells.
    Fatherazi S; Cook DL
    J Membr Biol; 1991 Mar; 120(2):105-14. PubMed ID: 2072381
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Studies of the unitary properties of adenosine-5'-triphosphate-regulated potassium channels of frog skeletal muscle.
    Spruce AE; Standen NB; Stanfield PR
    J Physiol; 1987 Jan; 382():213-36. PubMed ID: 2442362
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiple blocking mechanisms of ATP-sensitive potassium channels of frog skeletal muscle by tetraethylammonium ions.
    Davies NW; Spruce AE; Standen NB; Stanfield PR
    J Physiol; 1989 Jun; 413():31-48. PubMed ID: 2600853
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Block of calcium-activated potassium channels in mammalian arterial myocytes by tetraethylammonium ions.
    Langton PD; Nelson MT; Huang Y; Standen NB
    Am J Physiol; 1991 Mar; 260(3 Pt 2):H927-34. PubMed ID: 1900393
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ba2+, TEA+, and quinine effects on apical membrane K+ conductance and maxi K+ channels in gallbladder epithelium.
    Segal Y; Reuss L
    Am J Physiol; 1990 Jul; 259(1 Pt 1):C56-68. PubMed ID: 2372050
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single calcium-activated potassium channels recorded from cultured rat sympathetic neurones.
    Smart TG
    J Physiol; 1987 Aug; 389():337-60. PubMed ID: 2445975
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The ACh-evoked, Ca2+-activated whole-cell K+ current in mouse mandibular secretory cells. Whole-cell and fluorescence studies.
    Hayashi T; Poronnik P; Young JA; Cook DI
    J Membr Biol; 1996 Aug; 152(3):253-9. PubMed ID: 8672087
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bursting electrical activity in pancreatic beta-cells: evidence that the channel underlying the burst is sensitive to Ca2+ influx through L-type Ca2+ channels.
    Rosário LM; Barbosa RM; Antunes CM; Silva AM; Abrunhosa AJ; Santos RM
    Pflugers Arch; 1993 Sep; 424(5-6):439-47. PubMed ID: 7504808
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The diabetogenic agent alloxan increases K+ permeability by a mechanism involving activation of ATP-sensitive K(+)-channels in mouse pancreatic beta-cells.
    Carroll PB; Moura AS; Rojas E; Atwater I
    Mol Cell Biochem; 1994 Nov; 140(2):127-36. PubMed ID: 7898485
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two components of potassium current activated by depolarization of single smooth muscle cells from the rabbit portal vein.
    Beech DJ; Bolton TB
    J Physiol; 1989 Nov; 418():293-309. PubMed ID: 2621620
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calcium-activated potassium channels in native endothelial cells from rabbit aorta: conductance, Ca2+ sensitivity and block.
    Rusko J; Tanzi F; van Breemen C; Adams DJ
    J Physiol; 1992 Sep; 455():601-21. PubMed ID: 1484364
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quinine inhibits Ca2+-independent K+ channels whereas tetraethylammonium inhibits Ca2+-activated K+ channels in insulin-secreting cells.
    Findlay I; Dunne MJ; Ullrich S; Wollheim CB; Petersen OH
    FEBS Lett; 1985 Jun; 185(1):4-8. PubMed ID: 2581813
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Demonstration of a novel apamin-insensitive calcium-activated K+ channel in mouse pancreatic B cells.
    Ammälä C; Bokvist K; Larsson O; Berggren PO; Rorsman P
    Pflugers Arch; 1993 Feb; 422(5):443-8. PubMed ID: 8474849
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stimulation of the KATP channel by ADP and diazoxide requires nucleotide hydrolysis in mouse pancreatic beta-cells.
    Larsson O; Ammälä C; Bokvist K; Fredholm B; Rorsman P
    J Physiol; 1993 Apr; 463():349-65. PubMed ID: 8246187
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of a Ca2+-activated K+ current in insulin-secreting murine betaTC-3 cells.
    Kozak JA; Misler S; Logothetis DE
    J Physiol; 1998 Jun; 509 ( Pt 2)(Pt 2):355-70. PubMed ID: 9575286
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quinine blocks the high conductance, calcium-activated potassium channel in rat pancreatic beta-cells.
    Mancilla E; Rojas E
    FEBS Lett; 1990 Jan; 260(1):105-8. PubMed ID: 2404792
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diazoxide-sensitivity of the adenosine 5'-triphosphate-dependent K+ channel in mouse pancreatic beta-cells.
    Schwanstecher C; Dickel C; Ebers I; Lins S; Zünkler BJ; Panten U
    Br J Pharmacol; 1992 Sep; 107(1):87-94. PubMed ID: 1422580
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single channel study of a Ca(2+)-activated K+ current associated with ras-induced cell transformation.
    Huang Y; Rane SG
    J Physiol; 1993 Feb; 461():601-18. PubMed ID: 7688809
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.