These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
84 related articles for article (PubMed ID: 22017658)
21. Efficiency of the formulated plant-growth promoting Pseudomonas fluorescens MC46 inoculant on triclocarban treatment in soil and its effect on Vigna radiata growth and soil enzyme activities. Sipahutar MK; Piapukiew J; Vangnai AS J Hazard Mater; 2018 Feb; 344():883-892. PubMed ID: 29190586 [TBL] [Abstract][Full Text] [Related]
22. Azospirillum brasilense ameliorates the response of Arabidopsis thaliana to drought mainly via enhancement of ABA levels. Cohen AC; Bottini R; Pontin M; Berli FJ; Moreno D; Boccanlandro H; Travaglia CN; Piccoli PN Physiol Plant; 2015 Jan; 153(1):79-90. PubMed ID: 24796562 [TBL] [Abstract][Full Text] [Related]
23. Survival of biocontrol Pseudomonas fluorescens CHA0 in lysimeter effluent water depends on time of the year and soil type. Hase C; Nievergelt J; Moënne-Loccoz Y; Défago G J Appl Microbiol; 2001 Apr; 90(4):567-77. PubMed ID: 11309069 [TBL] [Abstract][Full Text] [Related]
24. Differential growth responses of Brachypodium distachyon genotypes to inoculation with plant growth promoting rhizobacteria. do Amaral FP; Pankievicz VC; Arisi AC; de Souza EM; Pedrosa F; Stacey G Plant Mol Biol; 2016 Apr; 90(6):689-97. PubMed ID: 26873699 [TBL] [Abstract][Full Text] [Related]
26. Inoculation with the plant-growth-promoting rhizobacterium Azospirillum brasilense causes little disturbance in the rhizosphere and rhizoplane of maize (Zea mays). Herschkovitz Y; Lerner A; Davidov Y; Rothballer M; Hartmann A; Okon Y; Jurkevitch E Microb Ecol; 2005 Aug; 50(2):277-88. PubMed ID: 16211327 [TBL] [Abstract][Full Text] [Related]
27. Cultivation-Based and Molecular Assessment of Bacterial Diversity in the Rhizosheath of Wheat under Different Crop Rotations. Tahir M; Mirza MS; Hameed S; Dimitrov MR; Smidt H PLoS One; 2015; 10(6):e0130030. PubMed ID: 26121588 [TBL] [Abstract][Full Text] [Related]
28. Effect of Pb-resistant plant growth-promoting rhizobacteria inoculation on growth and lead uptake by Lathyrus sativus. Abdelkrim S; Jebara SH; Saadani O; Chiboub M; Abid G; Jebara M J Basic Microbiol; 2018 Jul; 58(7):579-589. PubMed ID: 29737549 [TBL] [Abstract][Full Text] [Related]
29. Plant growth promotion rhizobacteria in onion production. Colo J; Hajnal-Jafari TI; Durić S; Stamenov D; Hamidović S Pol J Microbiol; 2014; 63(1):83-8. PubMed ID: 25033667 [TBL] [Abstract][Full Text] [Related]
30. Effect of Azospirillum brasilense inoculation on urease activity in soil and gamma-sterilized soil. Perotti EB; Pidello A Rev Argent Microbiol; 1999; 31(1):36-41. PubMed ID: 10327459 [TBL] [Abstract][Full Text] [Related]
31. Influence of substrate composition and flow rate on growth of Azospirillum brasilense Cd in a co-culture with 3 sorghum rhizobacteria. Lippi D; De Paolis MR; Di Mattia E; Pietrosanti T; Cacciari I Can J Microbiol; 2004 Oct; 50(10):861-7. PubMed ID: 15644901 [TBL] [Abstract][Full Text] [Related]
32. Improvement in bioavailability of tricalcium phosphate to Cymbopogon martinii var. motia by rhizobacteria, AMF and Azospirillum inoculation. Ratti N; Kumar S; Verma HN; Gautam SP Microbiol Res; 2001; 156(2):145-9. PubMed ID: 11572454 [TBL] [Abstract][Full Text] [Related]
33. Restoration of eroded soil in the Sonoran Desert with native leguminous trees using plant growth-promoting microorganisms and limited amounts of compost and water. Bashan Y; Salazar BG; Moreno M; Lopez BR; Linderman RG J Environ Manage; 2012 Jul; 102():26-36. PubMed ID: 22425876 [TBL] [Abstract][Full Text] [Related]
34. Evaluation of native bacteria and manganese phosphite for alternative control of charcoal root rot of soybean. Simonetti E; Viso NP; Montecchia M; Zilli C; Balestrasse K; Carmona M Microbiol Res; 2015 Nov; 180():40-8. PubMed ID: 26505310 [TBL] [Abstract][Full Text] [Related]
35. Short term effects of Glomus claroideum and Azospirillum brasilense on growth and root acid phosphatase activity of Carica papaya L. under phosphorus stress. Alarcón A; Davies FT; Egilla JN; Fox TC; Estrada-Luna AA; Ferrera-Cerrato R Rev Latinoam Microbiol; 2002; 44(1):31-7. PubMed ID: 17061513 [TBL] [Abstract][Full Text] [Related]
36. Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth-promoting rhizobacteria. Dey R; Pal KK; Bhatt DM; Chauhan SM Microbiol Res; 2004; 159(4):371-94. PubMed ID: 15646384 [TBL] [Abstract][Full Text] [Related]
37. Scale-up from shake flasks to pilot-scale production of the plant growth-promoting bacterium Azospirillum brasilense for preparing a liquid inoculant formulation. Trujillo-Roldán MA; Valdez-Cruz NA; Gonzalez-Monterrubio CF; Acevedo-Sánchez EV; Martínez-Salinas C; García-Cabrera RI; Gamboa-Suasnavart RA; Marín-Palacio LD; Villegas J; Blancas-Cabrera A Appl Microbiol Biotechnol; 2013 Nov; 97(22):9665-74. PubMed ID: 24061414 [TBL] [Abstract][Full Text] [Related]
38. Pseudomonas fluorescens and closely-related fluorescent pseudomonads as biocontrol agents of soil-borne phytopathogens. Couillerot O; Prigent-Combaret C; Caballero-Mellado J; Moënne-Loccoz Y Lett Appl Microbiol; 2009 May; 48(5):505-12. PubMed ID: 19291210 [TBL] [Abstract][Full Text] [Related]
39. Formulations of polymeric biodegradable low-cost foam by melt extrusion to deliver plant growth-promoting bacteria in agricultural systems. Marcelino PR; Milani KM; Mali S; Santos OJ; de Oliveira AL Appl Microbiol Biotechnol; 2016 Aug; 100(16):7323-38. PubMed ID: 27147530 [TBL] [Abstract][Full Text] [Related]
40. Indigenous microflora responses to introduction of cyanogenic strains of Pseudomonas fluorescens into soil. Piotrowska-Seget Z; Kozdrój J Acta Microbiol Pol; 1999; 48(1):73-8. PubMed ID: 10467697 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]