BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 22018023)

  • 1. Efficient aerobic succinate production from glucose in minimal medium with Corynebacterium glutamicum.
    Litsanov B; Kabus A; Brocker M; Bott M
    Microb Biotechnol; 2012 Jan; 5(1):116-28. PubMed ID: 22018023
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glycerol as a substrate for aerobic succinate production in minimal medium with Corynebacterium glutamicum.
    Litsanov B; Brocker M; Bott M
    Microb Biotechnol; 2013 Mar; 6(2):189-95. PubMed ID: 22513227
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward homosuccinate fermentation: metabolic engineering of Corynebacterium glutamicum for anaerobic production of succinate from glucose and formate.
    Litsanov B; Brocker M; Bott M
    Appl Environ Microbiol; 2012 May; 78(9):3325-37. PubMed ID: 22389371
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering of acetate recycling and citrate synthase to improve aerobic succinate production in Corynebacterium glutamicum.
    Zhu N; Xia H; Wang Z; Zhao X; Chen T
    PLoS One; 2013; 8(4):e60659. PubMed ID: 23593275
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An efficient succinic acid production process in a metabolically engineered Corynebacterium glutamicum strain.
    Okino S; Noburyu R; Suda M; Jojima T; Inui M; Yukawa H
    Appl Microbiol Biotechnol; 2008 Dec; 81(3):459-64. PubMed ID: 18777022
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Effect of overexpressing isocitrate lyase on succinate production in ldh(-1) Corynebacterium glutamicum].
    Yang C; Hao N; Yan M; Gao L; Xu L
    Sheng Wu Gong Cheng Xue Bao; 2013 Nov; 29(11):1696-700. PubMed ID: 24701837
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Redirecting carbon flux through pgi-deficient and heterologous transhydrogenase toward efficient succinate production in Corynebacterium glutamicum.
    Wang C; Zhou Z; Cai H; Chen Z; Xu H
    J Ind Microbiol Biotechnol; 2017 Jul; 44(7):1115-1126. PubMed ID: 28303352
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aerobic production of succinate from arabinose by metabolically engineered Corynebacterium glutamicum.
    Chen T; Zhu N; Xia H
    Bioresour Technol; 2014 Jan; 151():411-4. PubMed ID: 24169202
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Corynebacterium glutamicum CgynfM encodes a dicarboxylate transporter applicable to succinate production.
    Fukui K; Nanatani K; Nakayama M; Hara Y; Tokura M; Abe K
    J Biosci Bioeng; 2019 Apr; 127(4):465-471. PubMed ID: 30392965
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-yield anaerobic succinate production by strategically regulating multiple metabolic pathways based on stoichiometric maximum in Escherichia coli.
    Meng J; Wang B; Liu D; Chen T; Wang Z; Zhao X
    Microb Cell Fact; 2016 Aug; 15(1):141. PubMed ID: 27520031
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic engineering of Escherichia coli and in silico comparing of carboxylation pathways for high succinate productivity under aerobic conditions.
    Yang J; Wang Z; Zhu N; Wang B; Chen T; Zhao X
    Microbiol Res; 2014; 169(5-6):432-40. PubMed ID: 24103861
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering Corynebacterium glutamicum for efficient production of succinic acid from corn stover pretreated by concentrated-alkali under steam-assistant conditions.
    Li K; Li C; Zhao XQ; Liu CG; Bai FW
    Bioresour Technol; 2023 Jun; 378():128991. PubMed ID: 37003455
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering of Corynebacterium glutamicum for growth and succinate production from levoglucosan, a pyrolytic sugar substrate.
    Kim EM; Um Y; Bott M; Woo HM
    FEMS Microbiol Lett; 2015 Oct; 362(19):. PubMed ID: 26363018
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Platform engineering of Corynebacterium glutamicum with reduced pyruvate dehydrogenase complex activity for improved production of L-lysine, L-valine, and 2-ketoisovalerate.
    Buchholz J; Schwentner A; Brunnenkan B; Gabris C; Grimm S; Gerstmeir R; Takors R; Eikmanns BJ; Blombach B
    Appl Environ Microbiol; 2013 Sep; 79(18):5566-75. PubMed ID: 23835179
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of eliminating pyruvate node pathways and of coexpression of heterogeneous carboxylation enzymes on succinate production by Enterobacter aerogenes.
    Tajima Y; Yamamoto Y; Fukui K; Nishio Y; Hashiguchi K; Usuda Y; Sode K
    Appl Environ Microbiol; 2015 Feb; 81(3):929-37. PubMed ID: 25416770
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved succinate production in Corynebacterium glutamicum by engineering glyoxylate pathway and succinate export system.
    Zhu N; Xia H; Yang J; Zhao X; Chen T
    Biotechnol Lett; 2014 Mar; 36(3):553-60. PubMed ID: 24129953
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of CO
    Krüger A; Wiechert J; Gätgens C; Polen T; Mahr R; Frunzke J
    J Bacteriol; 2019 Oct; 201(20):. PubMed ID: 31358612
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Media optimization of Corynebacterium glutamicum for succinate production under oxygen-deprived condition.
    Jeon JM; Rajesh T; Song E; Lee HW; Lee HW; Yang YH
    J Microbiol Biotechnol; 2013 Feb; 23(2):211-7. PubMed ID: 23412064
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Succinate production from CO₂-grown microalgal biomass as carbon source using engineered Corynebacterium glutamicum through consolidated bioprocessing.
    Lee J; Sim SJ; Bott M; Um Y; Oh MK; Woo HM
    Sci Rep; 2014 Jul; 4():5819. PubMed ID: 25056811
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of succinate exporter in Corynebacterium glutamicum and its physiological roles under anaerobic conditions.
    Fukui K; Koseki C; Yamamoto Y; Nakamura J; Sasahara A; Yuji R; Hashiguchi K; Usuda Y; Matsui K; Kojima H; Abe K
    J Biotechnol; 2011 Jun; 154(1):25-34. PubMed ID: 21420450
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.