These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

452 related articles for article (PubMed ID: 22018241)

  • 1. The phosphoproteomes of Plasmodium falciparum and Toxoplasma gondii reveal unusual adaptations within and beyond the parasites' boundaries.
    Treeck M; Sanders JL; Elias JE; Boothroyd JC
    Cell Host Microbe; 2011 Oct; 10(4):410-9. PubMed ID: 22018241
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparative study on the heparin-binding proteomes of Toxoplasma gondii and Plasmodium falciparum.
    Zhang Y; Jiang N; Jia B; Chang Z; Zhang Y; Wei X; Zhou J; Wang H; Zhao X; Yu S; Song M; Tu Z; Lu H; Yin J; Wahlgren M; Chen Q
    Proteomics; 2014 Aug; 14(15):1737-45. PubMed ID: 24888565
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of Plasmodium falciparum Calcium-Dependent Protein Kinase 5 (PfCDPK5) on the Late Schizont Stage Phosphoproteome.
    Blomqvist K; Helmel M; Wang C; Absalon S; Labunska T; Rudlaff RM; Adapa S; Jiang R; Steen H; Dvorin JD
    mSphere; 2020 Jan; 5(1):. PubMed ID: 31915223
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of upstream open reading frames in translation regulation in the apicomplexan parasites
    Kaur C; Patankar S
    Parasitology; 2021 Sep; 148(11):1277-1287. PubMed ID: 34099078
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of a Toxoplasma gondii calcium calmodulin-dependent protein kinase homolog.
    Kato K; Sugi T; Takemae H; Takano R; Gong H; Ishiwa A; Horimoto T; Akashi H
    Parasit Vectors; 2016 Jul; 9(1):405. PubMed ID: 27444499
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Organelle Dynamics in Apicomplexan Parasites.
    Verhoef JMJ; Meissner M; Kooij TWA
    mBio; 2021 Aug; 12(4):e0140921. PubMed ID: 34425697
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modifications at K31 on the lateral surface of histone H4 contribute to genome structure and expression in apicomplexan parasites.
    Sindikubwabo F; Ding S; Hussain T; Ortet P; Barakat M; Baumgarten S; Cannella D; Palencia A; Bougdour A; Belmudes L; Couté Y; Tardieux I; Botté CY; Scherf A; Hakimi MA
    Elife; 2017 Nov; 6():. PubMed ID: 29101771
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Label-Based Mass Spectrometry Approaches for Robust Quantification of the Phosphoproteome and Total Proteome in Toxoplasma gondii.
    Broncel M; Treeck M
    Methods Mol Biol; 2020; 2071():453-468. PubMed ID: 31758466
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toxoplasma gondii and Neospora caninum induce different host cell responses at proteome-wide phosphorylation events; a step forward for uncovering the biological differences between these closely related parasites.
    Al-Bajalan MMM; Xia D; Armstrong S; Randle N; Wastling JM
    Parasitol Res; 2017 Oct; 116(10):2707-2719. PubMed ID: 28803361
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative Phosphoproteomic Analysis of Sporulated Oocysts and Tachyzoites of
    Wang ZX; Che L; Hu RS; Sun XL
    Molecules; 2022 Feb; 27(3):. PubMed ID: 35164288
    [No Abstract]   [Full Text] [Related]  

  • 11. Comparative analysis of stage specific gene regulation of apicomplexan parasites: Plasmodium falciparum and Toxoplasma gondii.
    Gopalakrishnan AM; López-Estraño C
    Infect Disord Drug Targets; 2010 Aug; 10(4):303-11. PubMed ID: 20429866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insights into the Plasmodium falciparum schizont phospho-proteome.
    Lasonder E; Treeck M; Alam M; Tobin AB
    Microbes Infect; 2012 Aug; 14(10):811-9. PubMed ID: 22569589
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tetracycline analogue-regulated transgene expression in Plasmodium falciparum blood stages using Toxoplasma gondii transactivators.
    Meissner M; Krejany E; Gilson PR; de Koning-Ward TF; Soldati D; Crabb BS
    Proc Natl Acad Sci U S A; 2005 Feb; 102(8):2980-5. PubMed ID: 15710888
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of Plasmodium Atg3-Atg8 Interaction Inhibitors Identifies Novel Alternative Mechanisms of Action in Toxoplasma gondii.
    Varberg JM; LaFavers KA; Arrizabalaga G; Sullivan WJ
    Antimicrob Agents Chemother; 2018 Feb; 62(2):. PubMed ID: 29158278
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative analysis of stage specific gene regulation of apicomplexan parasites: Plasmodium falciparum and Toxoplasma gondii.
    López-Estraño C
    Infect Disord Drug Targets; 2010 Aug; 10(4):240-1. PubMed ID: 20687894
    [No Abstract]   [Full Text] [Related]  

  • 16. The histone code of Toxoplasma gondii comprises conserved and unique posttranslational modifications.
    Nardelli SC; Che FY; Silmon de Monerri NC; Xiao H; Nieves E; Madrid-Aliste C; Angel SO; Sullivan WJ; Angeletti RH; Kim K; Weiss LM
    mBio; 2013 Dec; 4(6):e00922-13. PubMed ID: 24327343
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct evidence of O-GlcNAcylation in the apicomplexan Toxoplasma gondii: a biochemical and bioinformatic study.
    Perez-Cervera Y; Harichaux G; Schmidt J; Debierre-Grockiego F; Dehennaut V; Bieker U; Meurice E; Lefebvre T; Schwarz RT
    Amino Acids; 2011 Mar; 40(3):847-56. PubMed ID: 20661758
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Translational control in Plasmodium and toxoplasma parasites.
    Zhang M; Joyce BR; Sullivan WJ; Nussenzweig V
    Eukaryot Cell; 2013 Feb; 12(2):161-7. PubMed ID: 23243065
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of potent phosphodiesterase inhibitors that demonstrate cyclic nucleotide-dependent functions in apicomplexan parasites.
    Howard BL; Harvey KL; Stewart RJ; Azevedo MF; Crabb BS; Jennings IG; Sanders PR; Manallack DT; Thompson PE; Tonkin CJ; Gilson PR
    ACS Chem Biol; 2015 Apr; 10(4):1145-54. PubMed ID: 25555060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Not a Simple Tether: Binding of Toxoplasma gondii AMA1 to RON2 during Invasion Protects AMA1 from Rhomboid-Mediated Cleavage and Leads to Dephosphorylation of Its Cytosolic Tail.
    Krishnamurthy S; Deng B; Del Rio R; Buchholz KR; Treeck M; Urban S; Boothroyd J; Lam YW; Ward GE
    mBio; 2016 Sep; 7(5):. PubMed ID: 27624124
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.