BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 22018682)

  • 1. The discriminant capabilities of stability measures, trunk kinematics, and step kinematics in classifying successful and failed compensatory stepping responses by young adults.
    Crenshaw JR; Rosenblatt NJ; Hurt CP; Grabiner MD
    J Biomech; 2012 Jan; 45(1):129-33. PubMed ID: 22018682
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recovery from forward loss of balance in young and older adults using the stepping strategy.
    Carty CP; Mills P; Barrett R
    Gait Posture; 2011 Feb; 33(2):261-7. PubMed ID: 21146992
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Age-related differences in kinetic measures of landing phase lateral stability during a balance-restoring forward step.
    King GW; Akula CK; Luchies CW
    Gait Posture; 2012 Mar; 35(3):440-5. PubMed ID: 22153666
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The body configuration at step contact critically determines the successfulness of balance recovery in response to large backward perturbations.
    Weerdesteyn V; Laing AC; Robinovitch SN
    Gait Posture; 2012 Mar; 35(3):462-6. PubMed ID: 22196309
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptive recovery responses to repeated forward loss of balance in older adults.
    Barrett RS; Cronin NJ; Lichtwark GA; Mills PM; Carty CP
    J Biomech; 2012 Jan; 45(1):183-7. PubMed ID: 22018681
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of head-in-space stability on stepping reactions in young and elderly adults.
    Diehl MD; Pidcoe PE
    Physiother Theory Pract; 2011 Jul; 27(5):337-44. PubMed ID: 20812855
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Locomotor stability in able-bodied trunk-flexed gait across uneven ground.
    AminiAghdam S; Müller R; Blickhan R
    Hum Mov Sci; 2018 Dec; 62():176-183. PubMed ID: 30384186
    [TBL] [Abstract][Full Text] [Related]  

  • 8. EMG and kinematics analysis of the trunk and lower extremity during the sit-to-stand task while wearing shoes with different heel heights in healthy young women.
    Kim MH; Yi CH; Yoo WG; Choi BR
    Hum Mov Sci; 2011 Jun; 30(3):596-605. PubMed ID: 21232810
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of cane use on the compensatory step following posterior perturbations.
    Hall CD; Jensen JL
    Clin Biomech (Bristol, Avon); 2004 Aug; 19(7):678-87. PubMed ID: 15288453
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Variation in trunk kinematics influences variation in step width during treadmill walking by older and younger adults.
    Hurt CP; Rosenblatt N; Crenshaw JR; Grabiner MD
    Gait Posture; 2010 Apr; 31(4):461-4. PubMed ID: 20185314
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of varying acceleration of platform translation and toes-up rotations on the pattern and magnitude of balance reactions in humans.
    Szturm T; Fallang B
    J Vestib Res; 1998; 8(5):381-97. PubMed ID: 9770656
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cross-sectional validation of inertial measurement units for estimating trunk flexion kinematics during treadmill disturbances.
    Miller EJ; Kaufman KR
    Med Eng Phys; 2019 Aug; 70():51-54. PubMed ID: 31262554
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Age-dependent differences in lateral balance recovery through protective stepping.
    Mille ML; Johnson ME; Martinez KM; Rogers MW
    Clin Biomech (Bristol, Avon); 2005 Jul; 20(6):607-16. PubMed ID: 15890438
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anticipatory postural adjustments contribute to age-related changes in compensatory steps associated with unilateral perturbations.
    Hyodo M; Saito M; Ushiba J; Tomita Y; Minami M; Masakado Y
    Gait Posture; 2012 Jul; 36(3):625-30. PubMed ID: 22784814
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of overhead harness configurations for measuring trunk kinematics during treadmill disturbances.
    Miller EJ; Kaufman KR
    Gait Posture; 2019 Feb; 68():15-17. PubMed ID: 30445277
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plantar hypoesthesia alters time-to-boundary measures of postural control.
    McKeon PO; Hertel J
    Somatosens Mot Res; 2007 Dec; 24(4):171-7. PubMed ID: 18097990
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomechanical predictors of maximal balance recovery performance amongst community-dwelling older adults.
    Graham DF; Carty CP; Lloyd DG; Barrett RS
    Exp Gerontol; 2015 Jun; 66():39-46. PubMed ID: 25871728
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of trunk flexion on able-bodied gait.
    Saha D; Gard S; Fatone S
    Gait Posture; 2008 May; 27(4):653-60. PubMed ID: 17920272
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computation of trunk equilibrium and stability in free flexion-extension movements at different velocities.
    Bazrgari B; Shirazi-Adl A; Trottier M; Mathieu P
    J Biomech; 2008; 41(2):412-21. PubMed ID: 17897654
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fall risk during opposing stance perturbations among healthy adults and chronic stroke survivors.
    Patel PJ; Bhatt T
    Exp Brain Res; 2018 Feb; 236(2):619-628. PubMed ID: 29279981
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.