These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Relationship between corneal biomechanical properties, central corneal thickness, and intraocular pressure across the spectrum of glaucoma. Kaushik S; Pandav SS; Banger A; Aggarwal K; Gupta A Am J Ophthalmol; 2012 May; 153(5):840-849.e2. PubMed ID: 22310080 [TBL] [Abstract][Full Text] [Related]
4. Relationship between Optical Coherence Tomography Angiography Vessel Density and Severity of Visual Field Loss in Glaucoma. Yarmohammadi A; Zangwill LM; Diniz-Filho A; Suh MH; Yousefi S; Saunders LJ; Belghith A; Manalastas PI; Medeiros FA; Weinreb RN Ophthalmology; 2016 Dec; 123(12):2498-2508. PubMed ID: 27726964 [TBL] [Abstract][Full Text] [Related]
5. Analyzing biomechanical parameters of the cornea with glaucoma severity in open-angle glaucoma. Pillunat KR; Hermann C; Spoerl E; Pillunat LE Graefes Arch Clin Exp Ophthalmol; 2016 Jul; 254(7):1345-51. PubMed ID: 27118038 [TBL] [Abstract][Full Text] [Related]
6. Corneal Hysteresis and Progressive Retinal Nerve Fiber Layer Loss in Glaucoma. Zhang C; Tatham AJ; Abe RY; Diniz-Filho A; Zangwill LM; Weinreb RN; Medeiros FA Am J Ophthalmol; 2016 Jun; 166():29-36. PubMed ID: 26949135 [TBL] [Abstract][Full Text] [Related]
7. Comparison of the corneal biomechanical properties, optic nerve head topographic parameters, and retinal nerve fiber layer thickness measurements in diabetic and non-diabetic primary open-angle glaucoma. Akkaya S; Can E; Öztürk F Int Ophthalmol; 2016 Oct; 36(5):727-36. PubMed ID: 26857822 [TBL] [Abstract][Full Text] [Related]
8. The Association Between Ocular Rigidity and Neuroretinal Damage in Glaucoma. Sayah DN; Mazzaferri J; Descovich D; Costantino S; Lesk MR Invest Ophthalmol Vis Sci; 2020 Nov; 61(13):11. PubMed ID: 33151280 [TBL] [Abstract][Full Text] [Related]
9. Relationships between corneal biomechanics and the structural and functional parameters of glaucoma damage. Hocaoğlu M; Kara C; Şen EM; Öztürk F Arq Bras Oftalmol; 2020; 83(2):132-140. PubMed ID: 31778449 [TBL] [Abstract][Full Text] [Related]
10. Diffuse glaucomatous structural and functional damage in the hemifield without significant pattern loss. Grewal DS; Sehi M; Greenfield DS Arch Ophthalmol; 2009 Nov; 127(11):1442-8. PubMed ID: 19901209 [TBL] [Abstract][Full Text] [Related]
11. Corneal biomechanics measured with the ocular response analyser in patients with unilateral open-angle glaucoma. Hirneiss C; Neubauer AS; Yu A; Kampik A; Kernt M Acta Ophthalmol; 2011 Mar; 89(2):e189-92. PubMed ID: 21288308 [TBL] [Abstract][Full Text] [Related]
12. Comparison of the corneal biomechanical properties with the Ocular Response Analyzer® (ORA) in African and Caucasian normal subjects and patients with glaucoma. Detry-Morel M; Jamart J; Hautenauven F; Pourjavan S Acta Ophthalmol; 2012 Mar; 90(2):e118-24. PubMed ID: 21989354 [TBL] [Abstract][Full Text] [Related]
13. Correlations Between the Individual Risk for Glaucoma and RNFL and Optic Disc Morphometrical Evaluations in Ocular Hypertensive Patients. Colombo L; Bertuzzi F; Rulli E; Miglior S J Glaucoma; 2016 May; 25(5):e455-62. PubMed ID: 26091177 [TBL] [Abstract][Full Text] [Related]
14. Significance of corneal biomechanical properties in patients with progressive normal-tension glaucoma. Park JH; Jun RM; Choi KR Br J Ophthalmol; 2015 Jun; 99(6):746-51. PubMed ID: 25555704 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of corneal biomechanical properties with the Reichert Ocular Response Analyzer. Detry-Morel M; Jamart J; Pourjavan S Eur J Ophthalmol; 2011; 21(2):138-48. PubMed ID: 20853262 [TBL] [Abstract][Full Text] [Related]
16. The Relationship Between Asymmetries of Corneal Properties and Rates of Visual Field Progression in Glaucoma Patients. Estrela T; Jammal AA; Mariottoni EB; Urata CN; Ogata NG; Berchuck SI; Medeiros FA J Glaucoma; 2020 Oct; 29(10):872-877. PubMed ID: 32769735 [TBL] [Abstract][Full Text] [Related]
17. Corneal Biomechanical Changes Caused by Acute Elevation of IOP in Eyes with and without Glaucoma. Katiyar S; Tong J; Pensyl D; Sullivan-Mee M Optom Vis Sci; 2021 Apr; 98(4):367-373. PubMed ID: 33828042 [TBL] [Abstract][Full Text] [Related]
18. The Influence of Corneal Biomechanical Properties on Intraocular Pressure Measurements Using a Rebound Self-tonometer. Brown L; Foulsham W; Pronin S; Tatham AJ J Glaucoma; 2018 Jun; 27(6):511-518. PubMed ID: 29557828 [TBL] [Abstract][Full Text] [Related]
19. Combining corneal hysteresis with central corneal thickness and intraocular pressure for glaucoma risk assessment. Pensyl D; Sullivan-Mee M; Torres-Monte M; Halverson K; Qualls C Eye (Lond); 2012 Oct; 26(10):1349-56. PubMed ID: 22878449 [TBL] [Abstract][Full Text] [Related]
20. Macular and Optic Nerve Head Vessel Density and Progressive Retinal Nerve Fiber Layer Loss in Glaucoma. Moghimi S; Zangwill LM; Penteado RC; Hasenstab K; Ghahari E; Hou H; Christopher M; Yarmohammadi A; Manalastas PIC; Shoji T; Bowd C; Weinreb RN Ophthalmology; 2018 Nov; 125(11):1720-1728. PubMed ID: 29907322 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]