These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 22018849)

  • 1. Gold-plating of Mylar lift films to capitalize on surface enhanced Raman spectroscopy for chemical extraction of drug residues.
    Fox JD; Waverka KN; Verbeck GF
    Forensic Sci Int; 2012 Mar; 216(1-3):141-5. PubMed ID: 22018849
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultra-trace analysis of illicit drugs from transfer of an electrostatic lift.
    Wallace N; Hueske E; Verbeck GF
    Sci Justice; 2011 Dec; 51(4):196-203. PubMed ID: 22137053
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct analyte-probed nanoextraction coupled to nanospray ionization-mass spectrometry of drug residues from latent fingerprints.
    Clemons K; Wiley R; Waverka K; Fox J; Dziekonski E; Verbeck GF
    J Forensic Sci; 2013 Jul; 58(4):875-80. PubMed ID: 23682857
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanomanipulation-coupled nanospray mass spectrometry applied to the extraction and analysis of trace analytes found on fibers.
    Ledbetter NL; Walton BL; Davila P; Hoffmann WD; Ernest RN; Verbeck GF
    J Forensic Sci; 2010 Sep; 55(5):1218-21. PubMed ID: 20456588
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measurement of DNA adducts using surface-enhanced Raman spectroscopy.
    Helmenstine A; Uziel M; Vo-Dinh T
    J Toxicol Environ Health; 1993; 40(2-3):195-202. PubMed ID: 8230295
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of falsified documents via direct analyte-probed nanoextraction coupled to nanospray mass spectrometry, fluorescence microscopy, and Raman spectroscopy.
    Huynh V; Williams KC; Golden TD; Verbeck GF
    Analyst; 2015 Oct; 140(19):6553-62. PubMed ID: 26179027
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dithiocarbamate-coated SERS substrates: sensitivity gain by partial surface passivation.
    Zhao Y; Newton JN; Liu J; Wei A
    Langmuir; 2009 Dec; 25(24):13833-9. PubMed ID: 19685897
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanomanipulation-coupled to nanospray mass spectrometry applied to document and ink analysis.
    Huynh V; Joshi U; Leveille JM; Golden TD; Verbeck GF
    Forensic Sci Int; 2014 Sep; 242():150-156. PubMed ID: 25063931
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Minimally invasive surface-enhanced Raman scattering detection with depth profiles based on a surface-enhanced Raman scattering-active acupuncture needle.
    Dong J; Chen Q; Rong C; Li D; Rao Y
    Anal Chem; 2011 Aug; 83(16):6191-5. PubMed ID: 21728307
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual function surface-enhanced Raman active extractor for the detection of environmental contaminants.
    Bhandari D; Walworth MJ; Sepaniak MJ
    Appl Spectrosc; 2009 May; 63(5):571-8. PubMed ID: 19470216
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correlation of surface-enhanced Raman spectroscopy and laser desorption-ionization mass spectrometry acquired from silver nanoparticle substrates.
    Nie B; Masyuko RN; Bohn PW
    Analyst; 2012 Mar; 137(6):1421-7. PubMed ID: 22314587
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of layer structures of gold nanoparticle films on surface enhanced Raman scattering.
    Oh MK; Yun S; Kim SK; Park S
    Anal Chim Acta; 2009 Sep; 649(1):111-6. PubMed ID: 19664470
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface-enhanced vibrational microspectroscopy of fulvic acid micelles.
    Alvarez-Puebla RA; Garrido JJ; Aroca RF
    Anal Chem; 2004 Dec; 76(23):7118-25. PubMed ID: 15571368
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication and characterization of homogeneous surface-enhanced Raman scattering substrates by single pulse UV-laser treatment of gold and silver films.
    Christou K; Knorr I; Ihlemann J; Wackerbarth H; Beushausen V
    Langmuir; 2010 Dec; 26(23):18564-9. PubMed ID: 21043441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characteristics of surface-enhanced Raman scattering and surface-enhanced fluorescence using a single and a double layer gold nanostructure.
    Hossain MK; Huang GG; Kaneko T; Ozaki Y
    Phys Chem Chem Phys; 2009 Sep; 11(34):7484-90. PubMed ID: 19690723
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiplexed microfluidic surface-enhanced Raman spectroscopy.
    Abu-Hatab NA; John JF; Oran JM; Sepaniak MJ
    Appl Spectrosc; 2007 Oct; 61(10):1116-22. PubMed ID: 17958963
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly controlled surface-enhanced Raman scattering chips using nanoengineered gold blocks.
    Yokota Y; Ueno K; Misawa H
    Small; 2011 Jan; 7(2):252-8. PubMed ID: 21213390
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multilayer enhanced gold film over nanostructure surface-enhanced Raman substrates.
    Li H; Baum CE; Sun J; Cullum BM
    Appl Spectrosc; 2006 Dec; 60(12):1377-85. PubMed ID: 17217586
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selectively deposited silver coatings on gold-capped silicon nanowires for surface-enhanced Raman spectroscopy.
    Becker M; Stelzner T; Steinbrück A; Berger A; Liu J; Lerose D; Gösele U; Christiansen S
    Chemphyschem; 2009 Jun; 10(8):1219-24. PubMed ID: 19399821
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.