These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 22018866)

  • 21. Bacterial Cr(VI) reduction concurrently improves sunflower (Helianthus Annuus L.) growth.
    Faisal M; Hasnain S
    Biotechnol Lett; 2005 Jul; 27(13):943-7. PubMed ID: 16091890
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Influence of various organic molecules on the reduction of hexavalent chromium mediated by zero-valent iron.
    Rivero-Huguet M; Marshall WD
    Chemosphere; 2009 Aug; 76(9):1240-8. PubMed ID: 19559460
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electrochemical removal of Cr(VI) from aqueous media using iron and aluminum as electrode materials: towards a better understanding of the involved phenomena.
    Mouedhen G; Feki M; De Petris-Wery M; Ayedi HF
    J Hazard Mater; 2009 Sep; 168(2-3):983-91. PubMed ID: 19329251
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Aqueous Cr(VI) reduction by electrodeposited zero-valent iron at neutral pH: acceleration by organic matters.
    Liu J; Wang C; Shi J; Liu H; Tong Y
    J Hazard Mater; 2009 Apr; 163(1):370-5. PubMed ID: 18687521
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reduction of Cr(VI) and bioaccumulation of chromium by gram positive and gram negative microorganisms not previously exposed to Cr-stress.
    Pattanapipitpaisal P; Mabbett AN; Finlay JA; Beswick AJ; Paterson-Beedle M; Essa A; Wright J; Tolley MR; Badar U; Ahmed N; Hobman JL; Brown NL; Macaskie LE
    Environ Technol; 2002 Jul; 23(7):731-45. PubMed ID: 12164635
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hexavalent chromium reduction by Bacillus sp. strain FM1 isolated from heavy-metal contaminated soil.
    Masood F; Malik A
    Bull Environ Contam Toxicol; 2011 Jan; 86(1):114-9. PubMed ID: 21181113
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of physicochemical factors on Cr(VI) removal from leachate by zero-valent iron and alpha-Fe(2)O(3) nanoparticles.
    Liu TY; Zhao L; Tan X; Liu SJ; Li JJ; Qi Y; Mao GZ
    Water Sci Technol; 2010; 61(11):2759-67. PubMed ID: 20489248
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Beneficial role of hydrophytes in removing Cr(VI) from wastewater in association with chromate-reducing bacterial strains Ochrobactrum intermedium and Brevibacterium.
    Faisal M; Hasnain S
    Int J Phytoremediation; 2005; 7(4):271-7. PubMed ID: 16463540
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hexavalent chromium removal and bioelectricity generation by Ochrobactrum sp. YC211 under different oxygen conditions.
    Chen CY; Cheng CY; Chen CK; Hsieh MC; Lin ST; Ho KY; Li JW; Lin CP; Chung YC
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2016; 51(6):502-8. PubMed ID: 26889692
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Removal of hexavalent chromium from aqueous solution by iron nanoparticles.
    Niu SF; Liu Y; Xu XH; Lou ZH
    J Zhejiang Univ Sci B; 2005 Oct; 6(10):1022-7. PubMed ID: 16187417
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Stabilization of chromium ore processing residue (COPR) with nanoscale iron particles.
    Cao J; Zhang WX
    J Hazard Mater; 2006 May; 132(2-3):213-9. PubMed ID: 16621279
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of inorganic anion on Cr(VI) photo-reduction in the presence of ferric ion.
    Tzou YM; Hsu CL; Chen CC; Chen JH; Wu JJ; Tseng KJ
    J Hazard Mater; 2008 Aug; 156(1-3):374-80. PubMed ID: 18249065
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Immunomodulation in Mytilus galloprovincialis by non-toxic doses of hexavalent chromium.
    Ciacci C; Barmo C; Fabbri R; Canonico B; Gallo G; Canesi L
    Fish Shellfish Immunol; 2011 Dec; 31(6):1026-33. PubMed ID: 21925273
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of chromium(VI) action on Arthrobacter oxydans.
    Asatiani NV; Abuladze MK; Kartvelishvili TM; Bakradze NG; Sapojnikova NA; Tsibakhashvili NY; Tabatadze LV; Lejava LV; Asanishvili LL; Holman HY
    Curr Microbiol; 2004 Nov; 49(5):321-6. PubMed ID: 15486705
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Growth stimulatory effect of Ochrobactrum intermedium and Bacillus cereus on Vigna radiata plants.
    Faisal M; Hasnain S
    Lett Appl Microbiol; 2006 Oct; 43(4):461-6. PubMed ID: 16965380
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The molecular structure of complexes formed by chromium or cobalt ions in simulated physiological fluids.
    Tkaczyk C; Huk OL; Mwale F; Antoniou J; Zukor DJ; Petit A; Tabrizian M
    Biomaterials; 2009 Feb; 30(4):460-7. PubMed ID: 18976808
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reduction kinetics of Fe(III), Co(III), U(VI), Cr(VI), and Tc(VII) in cultures of dissimilatory metal-reducing bacteria.
    Liu C; Gorby YA; Zachara JM; Fredrickson JK; Brown CF
    Biotechnol Bioeng; 2002 Dec; 80(6):637-49. PubMed ID: 12378605
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Extent of oxidation of Cr(III) to Cr(VI) under various conditions pertaining to natural environment.
    Apte AD; Tare V; Bose P
    J Hazard Mater; 2006 Feb; 128(2-3):164-74. PubMed ID: 16297546
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cometabolism of Cr(VI) by Shewanella oneidensis MR-1 produces cell-associated reduced chromium and inhibits growth.
    Middleton SS; Latmani RB; Mackey MR; Ellisman MH; Tebo BM; Criddle CS
    Biotechnol Bioeng; 2003 Sep; 83(6):627-37. PubMed ID: 12889027
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Environmental conditions affecting exopolysaccharide production by Pseudomonas aeruginosa, Micrococcus sp., and Ochrobactrum sp.
    Kiliç NK; Dönmez G
    J Hazard Mater; 2008 Jun; 154(1-3):1019-24. PubMed ID: 18155834
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.