These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 2201893)
41. Studies on glucose-induced inactivation of gluconeogenetic enzymes in adenylate cyclase and cAMP-dependent protein kinase yeast mutants. Tortora P; Burlini N; Caspani G; Guerritore A Eur J Biochem; 1984 Dec; 145(3):543-8. PubMed ID: 6096142 [TBL] [Abstract][Full Text] [Related]
42. Activation of yeast trehalase by heat shock. Tôrres AP; Eymard S; Panek AD Braz J Med Biol Res; 1991; 24(10):977-84. PubMed ID: 1665726 [TBL] [Abstract][Full Text] [Related]
43. Intracellular signal triggered by cholera toxin in Saccharomyces boulardii and Saccharomyces cerevisiae. Brandão RL; Castro IM; Bambirra EA; Amaral SC; Fietto LG; Tropia MJ; Neves MJ; Dos Santos RG; Gomes NC; Nicoli JR Appl Environ Microbiol; 1998 Feb; 64(2):564-8. PubMed ID: 9464394 [TBL] [Abstract][Full Text] [Related]
44. [Modification of intracellular cAMP and cGMP concentration in yeast wild strains and in selected mutants from Saccharomyces cerevisiae as a regulation model for higher eukaryotes]. Sachse O J Basic Microbiol; 1991; 31(3):189-94. PubMed ID: 1656013 [TBL] [Abstract][Full Text] [Related]
45. Activation of neutral trehalase by glucose and nitrogen source in Schizosaccharomyces pombe strains deficient in cAMP-dependent protein kinase activity. Soto T; Fernández J; Vicente-Soler J; Cansado J; Gacto M FEBS Lett; 1995 Jul; 367(3):263-6. PubMed ID: 7607319 [TBL] [Abstract][Full Text] [Related]
46. Sfl1 functions via the co-repressor Ssn6-Tup1 and the cAMP-dependent protein kinase Tpk2. Conlan RS; Tzamarias D J Mol Biol; 2001 Jun; 309(5):1007-15. PubMed ID: 11399075 [TBL] [Abstract][Full Text] [Related]
47. Analysis of the mechanism of activation of cAMP-dependent protein kinase through the study of mutants of the yeast regulatory subunit. Zaremberg V; Moreno S Eur J Biochem; 1996 Apr; 237(1):136-42. PubMed ID: 8620865 [TBL] [Abstract][Full Text] [Related]
48. A specific mutation in Saccharomyces cerevisiae adenylate cyclase, Cyr1K176M, eliminates glucose- and acidification-induced cAMP signalling and delays glucose-induced loss of stress resistance. Dumortier F; Vanhalewyn M; Debast G; Colombo S; Ma P; Winderickx J; Van Dijck P; Thevelein JM Int J Food Microbiol; 2000 Apr; 55(1-3):103-7. PubMed ID: 10791726 [TBL] [Abstract][Full Text] [Related]
49. Efficient transition to growth on fermentable carbon sources in Saccharomyces cerevisiae requires signaling through the Ras pathway. Jiang Y; Davis C; Broach JR EMBO J; 1998 Dec; 17(23):6942-51. PubMed ID: 9843500 [TBL] [Abstract][Full Text] [Related]
51. Glucose-induced stimulation of the Ras-cAMP pathway in yeast leads to multiple phosphorylations and activation of 6-phosphofructo-2-kinase. Dihazi H; Kessler R; Eschrich K Biochemistry; 2003 May; 42(20):6275-82. PubMed ID: 12755632 [TBL] [Abstract][Full Text] [Related]
52. Novel sensing mechanisms and targets for the cAMP-protein kinase A pathway in the yeast Saccharomyces cerevisiae. Thevelein JM; de Winde JH Mol Microbiol; 1999 Sep; 33(5):904-18. PubMed ID: 10476026 [TBL] [Abstract][Full Text] [Related]
53. Synergistic inhibition of APC/C by glucose and activated Ras proteins can be mediated by each of the Tpk1-3 proteins in Saccharomyces cerevisiae. Bolte M; Dieckhoff P; Krause C; Braus GH; Irniger S Microbiology (Reading); 2003 May; 149(Pt 5):1205-1216. PubMed ID: 12724382 [TBL] [Abstract][Full Text] [Related]
54. Insulin-like signaling in yeast: modulation of protein phosphatase 2A, protein kinase A, cAMP-specific phosphodiesterase, and glycosyl-phosphatidylinositol-specific phospholipase C activities. Müller G; Grey S; Jung C; Bandlow W Biochemistry; 2000 Feb; 39(6):1475-88. PubMed ID: 10684630 [TBL] [Abstract][Full Text] [Related]
55. Cyclic AMP may not be involved in catabolite repression in Saccharomyces cerevisiae: evidence from mutants unable to synthesize it. Matsumoto K; Uno I; Ishikawa T; Oshima Y J Bacteriol; 1983 Nov; 156(2):898-900. PubMed ID: 6313623 [TBL] [Abstract][Full Text] [Related]
56. The Cdc25 protein of Saccharomyces cerevisiae is required for normal glucose transport. Silljé HH; ter Schure EG; Verkleij AJ; Boonstra J; Verrips CT Microbiology (Reading); 1996 Jul; 142 ( Pt 7)():1765-73. PubMed ID: 8757740 [TBL] [Abstract][Full Text] [Related]
57. Investigating the caffeine effects in the yeast Saccharomyces cerevisiae brings new insights into the connection between TOR, PKC and Ras/cAMP signalling pathways. Kuranda K; Leberre V; Sokol S; Palamarczyk G; François J Mol Microbiol; 2006 Sep; 61(5):1147-66. PubMed ID: 16925551 [TBL] [Abstract][Full Text] [Related]
58. The Gap1 general amino acid permease acts as an amino acid sensor for activation of protein kinase A targets in the yeast Saccharomyces cerevisiae. Donaton MC; Holsbeeks I; Lagatie O; Van Zeebroeck G; Crauwels M; Winderickx J; Thevelein JM Mol Microbiol; 2003 Nov; 50(3):911-29. PubMed ID: 14617151 [TBL] [Abstract][Full Text] [Related]
59. Evaluation of in vivo activation of protein kinase A under non-dissociable conditions through the overexpression of wild-type and mutant regulatory subunits in Saccharomyces cerevisiae. Portela P; Zaremberg V; Moreno S Microbiology (Reading); 2001 May; 147(Pt 5):1149-1159. PubMed ID: 11320118 [TBL] [Abstract][Full Text] [Related]
60. cAMP-independent control of sporulation, glycogen metabolism, and heat shock resistance in S. cerevisiae. Cameron S; Levin L; Zoller M; Wigler M Cell; 1988 May; 53(4):555-66. PubMed ID: 2836063 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]