BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 22019097)

  • 1. Molecularly imprinted polymer anchored on the surface of denatured bovine serum albumin modified CdTe quantum dots as fluorescent artificial receptor for recognition of target protein.
    Zhang W; He XW; Chen Y; Li WY; Zhang YK
    Biosens Bioelectron; 2012 Jan; 31(1):84-9. PubMed ID: 22019097
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Composite of CdTe quantum dots and molecularly imprinted polymer as a sensing material for cytochrome c.
    Zhang W; He XW; Chen Y; Li WY; Zhang YK
    Biosens Bioelectron; 2011 Jan; 26(5):2553-8. PubMed ID: 21145227
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Epitope imprinted polymer coating CdTe quantum dots for specific recognition and direct fluorescent quantification of the target protein bovine serum albumin.
    Yang YQ; He XW; Wang YZ; Li WY; Zhang YK
    Biosens Bioelectron; 2014 Apr; 54():266-72. PubMed ID: 24287415
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel hybrid structure silica/CdTe/molecularly imprinted polymer: synthesis, specific recognition, and quantitative fluorescence detection of bovine hemoglobin.
    Li DY; He XW; Chen Y; Li WY; Zhang YK
    ACS Appl Mater Interfaces; 2013 Dec; 5(23):12609-16. PubMed ID: 24256153
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Purification of denatured bovine serum albumin coated CdTe quantum dots for sensitive detection of silver(I) ions.
    Wang JH; Wang HQ; Zhang HL; Li XQ; Hua XF; Cao YC; Huang ZL; Zhao YD
    Anal Bioanal Chem; 2007 Jun; 388(4):969-74. PubMed ID: 17468858
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative syntheses of tetracycline-imprinted polymeric silicate and acrylate on CdTe quantum dots as fluorescent sensors.
    Chao MR; Hu CW; Chen JL
    Biosens Bioelectron; 2014 Nov; 61():471-7. PubMed ID: 24934749
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecularly imprinted polymer based on CdTe@SiO2 quantum dots as a fluorescent sensor for the recognition of norepinephrine.
    Wei F; Wu Y; Xu G; Gao Y; Yang J; Liu L; Zhou P; Hu Q
    Analyst; 2014 Nov; 139(22):5785-92. PubMed ID: 25148475
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective optosensing of clenbuterol and melamine using molecularly imprinted polymer-capped CdTe quantum dots.
    The Huy B; Seo MH; Zhang X; Lee YI
    Biosens Bioelectron; 2014 Jul; 57():310-6. PubMed ID: 24607582
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid detection of aflatoxin B
    Guo P; Yang W; Hu H; Wang Y; Li P
    Anal Bioanal Chem; 2019 May; 411(12):2607-2617. PubMed ID: 30877344
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A sensitive fluorescent nanosensor for chloramphenicol based on molecularly imprinted polymer-capped CdTe quantum dots.
    Amjadi M; Jalili R; Manzoori JL
    Luminescence; 2016 May; 31(3):633-9. PubMed ID: 27037966
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of Optical Sensors Based on Quantum Dots Using Molecularly Imprinted Polymers for Determination of Prilocaine.
    Kazemifard N; Ensafi AA; Saberi Z
    Methods Mol Biol; 2020; 2135():275-283. PubMed ID: 32246342
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ratiometric fluorescence nanosensors based on core-shell structured carbon/CdTe quantum dots and surface molecularly imprinted polymers for the detection of sulfadiazine.
    Chen X; Luan Y; Wang N; Zhou Z; Ni X; Cao Y; Zhang G; Lai Y; Yang W
    J Sep Sci; 2018 Dec; 41(23):4394-4401. PubMed ID: 30307113
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A "turn-on" fluorescent receptor for detecting tyrosine phosphopeptide using the surface imprinting procedure and the epitope approach.
    Li DY; Qin YP; Li HY; He XW; Li WY; Zhang YK
    Biosens Bioelectron; 2015 Apr; 66():224-30. PubMed ID: 25437356
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly sensitive gaseous formaldehyde sensor with CdTe quantum dots multilayer films.
    Ma Q; Cui H; Su X
    Biosens Bioelectron; 2009 Dec; 25(4):839-44. PubMed ID: 19765971
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecularly imprinted upconversion nanoparticles for highly selective and sensitive sensing of Cytochrome c.
    Guo T; Deng Q; Fang G; Liu C; Huang X; Wang S
    Biosens Bioelectron; 2015 Dec; 74():498-503. PubMed ID: 26176210
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CdTe quantum dots coated with a molecularly imprinted polymer for fluorometric determination of norfloxacin in seawater.
    Shi T; Fu H; Tan L; Wang J
    Mikrochim Acta; 2019 May; 186(6):362. PubMed ID: 31104121
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of molecular imprinting polymer anchored on CdTe quantum dots for the detection of sulfadiazine in seawater.
    Shi T; Tan L; Fu H; Wang J
    Mar Pollut Bull; 2019 Sep; 146():591-597. PubMed ID: 31426197
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly selective fluorescent sensing of proteins based on a fluorescent molecularly imprinted nanosensor.
    Deng Q; Wu J; Zhai X; Fang G; Wang S
    Sensors (Basel); 2013 Sep; 13(10):12994-3004. PubMed ID: 24077318
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CdTe quantum dots@luminol as signal amplification system for chrysoidine with chemiluminescence-chitosan/graphene oxide-magnetite-molecularly imprinting sensor.
    Duan H; Li L; Wang X; Wang Y; Li J; Luo C
    Spectrochim Acta A Mol Biomol Spectrosc; 2016 Jan; 153():535-41. PubMed ID: 26433339
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel dual-function molecularly imprinted polymer on CdTe/ZnS quantum dots for highly selective and sensitive determination of ractopamine.
    Liu H; Liu D; Fang G; Liu F; Liu C; Yang Y; Wang S
    Anal Chim Acta; 2013 Jan; 762():76-82. PubMed ID: 23327948
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.