BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 2201922)

  • 1. Suppression of c-ras transformation by GTPase-activating protein.
    Zhang K; DeClue JE; Vass WC; Papageorge AG; McCormick F; Lowy DR
    Nature; 1990 Aug; 346(6286):754-6. PubMed ID: 2201922
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The non-catalytic domain of ras-GAP inhibits transformation induced by G protein coupled receptors.
    Xu N; McCormick F; Gutkind JS
    Oncogene; 1994 Feb; 9(2):597-601. PubMed ID: 8290270
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The transmembrane domain of the large subunit of HSV-2 ribonucleotide reductase (ICP10) is required for protein kinase activity and transformation-related signaling pathways that result in ras activation.
    Smith CC; Luo JH; Hunter JC; Ordonez JV; Aurelian L
    Virology; 1994 May; 200(2):598-612. PubMed ID: 8178446
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of the Ras signaling pathway by GTPase-activating protein in PC12 cells.
    Yao R; Cooper GM
    Oncogene; 1995 Oct; 11(8):1607-14. PubMed ID: 7478585
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of GTPases and GTPase regulatory proteins in oncogenesis.
    Grunicke HH; Maly K
    Crit Rev Oncog; 1993; 4(4):389-402. PubMed ID: 8353139
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tyrosine phosphorylation of Shc proteins and formation of Shc/Grb2 complex correlate to the transformation of NIH3T3 cells mediated by the point-mutation activated neu.
    Xie Y; Li K; Hung MC
    Oncogene; 1995 Jun; 10(12):2409-13. PubMed ID: 7784091
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of Ras effector mutant interactions with the NF1-GAP related domain.
    Marshall MS; Hettich LA
    Oncogene; 1993 Feb; 8(2):425-31. PubMed ID: 8426748
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ras-GTPase activating protein inhibition specifically induces apoptosis of tumour cells.
    Leblanc V; Delumeau I; Tocqué B
    Oncogene; 1999 Aug; 18(34):4884-9. PubMed ID: 10490822
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transformation suppressor activity of C3G is independent of its CDC25-homology domain.
    Guerrero C; Fernandez-Medarde A; Rojas JM; Font de Mora J; Esteban LM; Santos E
    Oncogene; 1998 Feb; 16(5):613-24. PubMed ID: 9482107
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of carcinogenesis: the role of oncogenes, transcriptional enhancers and growth factors.
    Spandidos DA
    Anticancer Res; 1985; 5(5):485-98. PubMed ID: 3904595
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A peptide from the GAP-binding domain of the ras-p21 protein and azatyrosine block ras-induced maturation of Xenopus oocytes.
    Chung DL; Brandt-Rauf P; Murphy RB; Nishimura S; Yamaizumi Z; Weinstein IB; Pincus MR
    Anticancer Res; 1991; 11(4):1373-8. PubMed ID: 1746893
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transforming and c-fos promoter/enhancer-stimulating activities of a GDP/GTP exchange protein for small GTP-binding proteins.
    Takai Y; Kaibuchi K; Kikuchi A; Kawata M; Sasaki T; Yamamoto T
    Princess Takamatsu Symp; 1991; 22():197-204. PubMed ID: 1844241
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Inhibition of ras-dependent transformation by using dominant negative ras mutant N116Y].
    Yokoyama T
    Hokkaido Igaku Zasshi; 1995 May; 70(3):459-71. PubMed ID: 7590597
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ras effector loop mutations that dissociate p120GAP and neurofibromin interactions.
    Stang S; Bottorff D; Stone JC
    Mol Carcinog; 1996 Jan; 15(1):64-9. PubMed ID: 8561868
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ras interaction with the GTPase-activating protein (GAP).
    Schaber MD; Garsky VM; Boylan D; Hill WS; Scolnick EM; Marshall MS; Sigal IS; Gibbs JB
    Proteins; 1989; 6(3):306-15. PubMed ID: 2516318
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Suppression of a human colon cancer cell line by introduction of an exogenous NF1 gene.
    Li Y; White R
    Cancer Res; 1996 Jun; 56(12):2872-6. PubMed ID: 8665528
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cellular functions of TC10, a Rho family GTPase: regulation of morphology, signal transduction and cell growth.
    Murphy GA; Solski PA; Jillian SA; Pérez de la Ossa P; D'Eustachio P; Der CJ; Rush MG
    Oncogene; 1999 Jul; 18(26):3831-45. PubMed ID: 10445846
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differences in GTPase-activating protein activity between liver tumors and normal liver tissue in mice.
    Müller O; Frech M; Gideon P; Wittinghofer A; Schwarz M
    Oncogene; 1992 Jul; 7(7):1407-12. PubMed ID: 1620552
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Decreased GTPase activity of K-ras mutants deriving from human functional adrenocortical tumours.
    Lin SR; Hsu CH; Tsai JH; Wang JY; Hsieh TJ; Wu CH
    Br J Cancer; 2000 Mar; 82(5):1035-40. PubMed ID: 10737386
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Complex formation between the p21ras GTPase-activating protein and phosphoproteins p62 and p190 is independent of p21ras signalling.
    Pronk GJ; de Vries-Smits AM; Ellis C; Bos JL
    Oncogene; 1993 Oct; 8(10):2773-80. PubMed ID: 8378086
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.