These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 22019797)

  • 1. Optimizing the subjective depth-of-focus with combinations of fourth- and sixth-order spherical aberration.
    Benard Y; Lopez-Gil N; Legras R
    Vision Res; 2011 Dec; 51(23-24):2471-7. PubMed ID: 22019797
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Depth of focus and visual acuity with primary and secondary spherical aberration.
    Yi F; Iskander DR; Collins M
    Vision Res; 2011 Jul; 51(14):1648-58. PubMed ID: 21609729
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurement and prediction of subjective gradations of images in presence of monochromatic aberrations.
    Legras R; Benard Y
    Vision Res; 2013 Jun; 86():52-8. PubMed ID: 23624229
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Objective depth-of-focus is different from subjective depth-of-focus and correlated with accommodative microfluctuations.
    Yao P; Lin H; Huang J; Chu R; Jiang BC
    Vision Res; 2010 Jun; 50(13):1266-73. PubMed ID: 20399223
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of coma and spherical aberration on depth-of-focus measured using adaptive optics and computationally blurred images.
    Legras R; Benard Y; Lopez-Gil N
    J Cataract Refract Surg; 2012 Mar; 38(3):458-69. PubMed ID: 22340606
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of modulating ocular depth of focus upon accommodation microfluctuations in myopic and emmetropic subjects.
    Day M; Seidel D; Gray LS; Strang NC
    Vision Res; 2009 Jan; 49(2):211-8. PubMed ID: 18992269
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Subjective through-focus quality of vision with various versions of modified monovision.
    Vandermeer G; Rio D; Gicquel JJ; Pisella PJ; Legras R
    Br J Ophthalmol; 2015 Jul; 99(7):997-1003. PubMed ID: 25631484
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Subjective depth of field in presence of 4th-order and 6th-order Zernike spherical aberration using adaptive optics technology.
    Benard Y; Lopez-Gil N; Legras R
    J Cataract Refract Surg; 2010 Dec; 36(12):2129-38. PubMed ID: 21111317
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimation of the depth of focus from wavefront measurements.
    Yi F; Iskander DR; Collins MJ
    J Vis; 2010 Apr; 10(4):3.1-9. PubMed ID: 20465323
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expanding depth of focus by modifying higher-order aberrations induced by an adaptive optics visual simulator.
    Rocha KM; Vabre L; Chateau N; Krueger RR
    J Cataract Refract Surg; 2009 Nov; 35(11):1885-92. PubMed ID: 19878820
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Subjective depth-of-focus of the eye.
    Atchison DA; Charman WN; Woods RL
    Optom Vis Sci; 1997 Jul; 74(7):511-20. PubMed ID: 9293519
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modified monovision with spherical aberration to improve presbyopic through-focus visual performance.
    Zheleznyak L; Sabesan R; Oh JS; MacRae S; Yoon G
    Invest Ophthalmol Vis Sci; 2013 May; 54(5):3157-65. PubMed ID: 23557742
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced visual acuity and image perception following correction of highly aberrated eyes using an adaptive optics visual simulator.
    Rocha KM; Vabre L; Chateau N; Krueger RR
    J Refract Surg; 2010 Jan; 26(1):52-6. PubMed ID: 20199013
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of higher-order aberrations on depth-of-field.
    Zapata-Díaz JF; Marín-Franch I; Radhakrishnan H; López-Gil N
    J Vis; 2018 Nov; 18(12):5. PubMed ID: 30458513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Depth-of-field of the accommodating eye.
    Bernal-Molina P; Montés-Micó R; Legras R; López-Gil N
    Optom Vis Sci; 2014 Oct; 91(10):1208-14. PubMed ID: 25148219
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Limits of spherical blur determined with an adaptive optics mirror.
    Atchison DA; Guo H; Fisher SW
    Ophthalmic Physiol Opt; 2009 May; 29(3):300-11. PubMed ID: 19422562
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accommodation stimulus-response function and retinal image quality.
    Buehren T; Collins MJ
    Vision Res; 2006 May; 46(10):1633-45. PubMed ID: 16040078
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of residual ocular spherical aberration on objective and subjective quality of vision in pseudophakic eyes.
    Nochez Y; Majzoub S; Pisella PJ
    J Cataract Refract Surg; 2011 Jun; 37(6):1076-81. PubMed ID: 21596250
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of spherical aberration and small-pupil profiles in improving depth of focus for presbyopic corrections.
    Hickenbotham A; Tiruveedhula P; Roorda A
    J Cataract Refract Surg; 2012 Dec; 38(12):2071-9. PubMed ID: 23031641
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accommodation-related changes in monochromatic aberrations of the human eye as a function of age.
    López-Gil N; Fernández-Sánchez V; Legras R; Montés-Micó R; Lara F; Nguyen-Khoa JL
    Invest Ophthalmol Vis Sci; 2008 Apr; 49(4):1736-43. PubMed ID: 18385098
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.