These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 22019899)

  • 1. Modulating the performance of carbon nanotube field-effect transistors via Rose Bengal molecular doping.
    Huang J; Datar A; Somu S; Busnaina A
    Nanotechnology; 2011 Nov; 22(45):455202. PubMed ID: 22019899
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-kappa dielectrics for advanced carbon-nanotube transistors and logic gates.
    Javey A; Kim H; Brink M; Wang Q; Ural A; Guo J; McIntyre P; McEuen P; Lundstrom M; Dai H
    Nat Mater; 2002 Dec; 1(4):241-6. PubMed ID: 12618786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanowelding of carbon nanotube-metal contacts: an effective way to control the Schottky barrier and performance of carbon nanotube based field effect transistors.
    Nurbawono A; Zhang A; Cai Y; Wu Y; Feng YP; Zhang C
    J Chem Phys; 2012 May; 136(17):174704. PubMed ID: 22583262
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High performance amorphous ZnMgO/carbon nanotube composite thin-film transistors with a tunable threshold voltage.
    Liu X; Liu W; Xiao X; Wang C; Fan Z; Qu Y; Cai B; Guo S; Li J; Jiang C; Duan X; Liao L
    Nanoscale; 2013 Apr; 5(7):2830-4. PubMed ID: 23443668
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-performance printed carbon nanotube thin-film transistors array fabricated by a nonlithography technique using hafnium oxide passivation layer and mask.
    Pillai SK; Chan-Park MB
    ACS Appl Mater Interfaces; 2012 Dec; 4(12):7047-54. PubMed ID: 23194001
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Macroelectronic integrated circuits using high-performance separated carbon nanotube thin-film transistors.
    Wang C; Zhang J; Zhou C
    ACS Nano; 2010 Dec; 4(12):7123-32. PubMed ID: 21062091
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Screen printing as a scalable and low-cost approach for rigid and flexible thin-film transistors using separated carbon nanotubes.
    Cao X; Chen H; Gu X; Liu B; Wang W; Cao Y; Wu F; Zhou C
    ACS Nano; 2014 Dec; 8(12):12769-76. PubMed ID: 25497107
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High yield assembly and electron transport investigation of semiconducting-rich local-gated single-walled carbon nanotube field effect transistors.
    Kormondy KJ; Stokes P; Khondaker SI
    Nanotechnology; 2011 Oct; 22(41):415201. PubMed ID: 21914942
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploration of yttria films as gate dielectrics in sub-50 nm carbon nanotube field-effect transistors.
    Ding L; Zhang Z; Su J; Li Q; Peng LM
    Nanoscale; 2014 Oct; 6(19):11316-21. PubMed ID: 25139376
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced performance of short-channel carbon nanotube field-effect transistors due to gate-modulated electrical contacts.
    Cummings AW; LĂ©onard F
    ACS Nano; 2012 May; 6(5):4494-9. PubMed ID: 22530701
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA functionalization of carbon nanotubes for ultrathin atomic layer deposition of high kappa dielectrics for nanotube transistors with 60 mV/decade switching.
    Lu Y; Bangsaruntip S; Wang X; Zhang L; Nishi Y; Dai H
    J Am Chem Soc; 2006 Mar; 128(11):3518-9. PubMed ID: 16536515
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strategy for carrier control in carbon nanotube transistors.
    Yu WJ; Lee YH
    ChemSusChem; 2011 Jul; 4(7):890-904. PubMed ID: 21557492
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrating carbon nanotubes into silicon by means of vertical carbon nanotube field-effect transistors.
    Li J; Wang Q; Yue W; Guo Z; Li L; Zhao C; Wang X; Abutaha AI; Alshareef HN; Zhang Y; Zhang XX
    Nanoscale; 2014 Aug; 6(15):8956-61. PubMed ID: 24965261
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amphoteric doping of carbon nanotubes by encapsulation of organic molecules: electronic properties and quantum conductance.
    Meunier V; Sumpter BG
    J Chem Phys; 2005 Jul; 123(2):24705. PubMed ID: 16050764
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-aligned U-gate carbon nanotube field-effect transistor with extremely small parasitic capacitance and drain-induced barrier lowering.
    Ding L; Wang Z; Pei T; Zhang Z; Wang S; Xu H; Peng F; Li Y; Peng LM
    ACS Nano; 2011 Apr; 5(4):2512-9. PubMed ID: 21370813
    [TBL] [Abstract][Full Text] [Related]  

  • 16. pH-dependent electron-transport properties of carbon nanotubes.
    Back JH; Shim M
    J Phys Chem B; 2006 Nov; 110(47):23736-41. PubMed ID: 17125334
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ballistic carbon nanotube field-effect transistors.
    Javey A; Guo J; Wang Q; Lundstrom M; Dai H
    Nature; 2003 Aug; 424(6949):654-7. PubMed ID: 12904787
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metal contact engineering and registration-free fabrication of complementary metal-oxide semiconductor integrated circuits using aligned carbon nanotubes.
    Wang C; Ryu K; Badmaev A; Zhang J; Zhou C
    ACS Nano; 2011 Feb; 5(2):1147-53. PubMed ID: 21271709
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dielectrophoresis-Based Positioning of Carbon Nanotubes for Wafer-Scale Fabrication of Carbon Nanotube Devices.
    Kimbrough J; Williams L; Yuan Q; Xiao Z
    Micromachines (Basel); 2020 Dec; 12(1):. PubMed ID: 33375602
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Local-gated single-walled carbon nanotube field effect transistors assembled by AC dielectrophoresis.
    Stokes P; Khondaker SI
    Nanotechnology; 2008 Apr; 19(17):175202. PubMed ID: 21825663
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.