BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 22020100)

  • 1. 55 Amino acid linker between helicase and carboxyl terminal domains of RIG-I functions as a critical repression domain and determines inter-domain conformation.
    Kageyama M; Takahasi K; Narita R; Hirai R; Yoneyama M; Kato H; Fujita T
    Biochem Biophys Res Commun; 2011 Nov; 415(1):75-81. PubMed ID: 22020100
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The C-terminal regulatory domain is the RNA 5'-triphosphate sensor of RIG-I.
    Cui S; Eisenächer K; Kirchhofer A; Brzózka K; Lammens A; Lammens K; Fujita T; Conzelmann KK; Krug A; Hopfner KP
    Mol Cell; 2008 Feb; 29(2):169-79. PubMed ID: 18243112
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic discrimination of self/non-self RNA by the ATPase activity of RIG-I and MDA5.
    Louber J; Brunel J; Uchikawa E; Cusack S; Gerlier D
    BMC Biol; 2015 Jul; 13():54. PubMed ID: 26215161
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural basis of RNA recognition and activation by innate immune receptor RIG-I.
    Jiang F; Ramanathan A; Miller MT; Tang GQ; Gale M; Patel SS; Marcotrigiano J
    Nature; 2011 Sep; 479(7373):423-7. PubMed ID: 21947008
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression profiles of carp IRF-3/-7 correlate with the up-regulation of RIG-I/MAVS/TRAF3/TBK1, four pivotal molecules in RIG-I signaling pathway.
    Feng H; Liu H; Kong R; Wang L; Wang Y; Hu W; Guo Q
    Fish Shellfish Immunol; 2011; 30(4-5):1159-69. PubMed ID: 21385615
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural basis of double-stranded RNA recognition by the RIG-I like receptor MDA5.
    Li X; Lu C; Stewart M; Xu H; Strong RK; Igumenova T; Li P
    Arch Biochem Biophys; 2009 Aug; 488(1):23-33. PubMed ID: 19531363
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonself RNA-sensing mechanism of RIG-I helicase and activation of antiviral immune responses.
    Takahasi K; Yoneyama M; Nishihori T; Hirai R; Kumeta H; Narita R; Gale M; Inagaki F; Fujita T
    Mol Cell; 2008 Feb; 29(4):428-40. PubMed ID: 18242112
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural and functional insights into 5'-ppp RNA pattern recognition by the innate immune receptor RIG-I.
    Wang Y; Ludwig J; Schuberth C; Goldeck M; Schlee M; Li H; Juranek S; Sheng G; Micura R; Tuschl T; Hartmann G; Patel DJ
    Nat Struct Mol Biol; 2010 Jul; 17(7):781-7. PubMed ID: 20581823
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure and dynamics of the second CARD of human RIG-I provide mechanistic insights into regulation of RIG-I activation.
    Ferrage F; Dutta K; Nistal-Villán E; Patel JR; Sánchez-Aparicio MT; De Ioannes P; Buku A; Aseguinolaza GG; García-Sastre A; Aggarwal AK
    Structure; 2012 Dec; 20(12):2048-61. PubMed ID: 23063562
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Origin and evolution of the RIG-I like RNA helicase gene family.
    Zou J; Chang M; Nie P; Secombes CJ
    BMC Evol Biol; 2009 Apr; 9():85. PubMed ID: 19400936
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The intrinsically disordered CARDs-Helicase linker in RIG-I is a molecular gate for RNA proofreading.
    Schweibenz BD; Devarkar SC; Solotchi M; Craig C; Zheng J; Pascal BD; Gokhale S; Xie P; Griffin PR; Patel SS
    EMBO J; 2022 May; 41(10):e109782. PubMed ID: 35437807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Paramyxovirus V proteins disrupt the fold of the RNA sensor MDA5 to inhibit antiviral signaling.
    Motz C; Schuhmann KM; Kirchhofer A; Moldt M; Witte G; Conzelmann KK; Hopfner KP
    Science; 2013 Feb; 339(6120):690-3. PubMed ID: 23328395
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of interferon production by RIG-I and LGP2: a lesson in self-control.
    Vitour D; Meurs EF
    Sci STKE; 2007 May; 2007(384):pe20. PubMed ID: 17473309
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity.
    Gack MU; Shin YC; Joo CH; Urano T; Liang C; Sun L; Takeuchi O; Akira S; Chen Z; Inoue S; Jung JU
    Nature; 2007 Apr; 446(7138):916-920. PubMed ID: 17392790
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Different activities of the conserved lysine residues in the double-stranded RNA binding domains of RNA helicase A in vitro and in the cell.
    Xing L; Niu M; Zhao X; Kleiman L
    Biochim Biophys Acta; 2014 Jul; 1840(7):2234-43. PubMed ID: 24726449
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unusual structural features revealed by the solution NMR structure of the NLRC5 caspase recruitment domain.
    Gutte PG; Jurt S; Grütter MG; Zerbe O
    Biochemistry; 2014 May; 53(19):3106-17. PubMed ID: 24815518
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Roles of RIG-I N-terminal tandem CARD and splice variant in TRIM25-mediated antiviral signal transduction.
    Gack MU; Kirchhofer A; Shin YC; Inn KS; Liang C; Cui S; Myong S; Ha T; Hopfner KP; Jung JU
    Proc Natl Acad Sci U S A; 2008 Oct; 105(43):16743-8. PubMed ID: 18948594
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The RIG-I ATPase core has evolved a functional requirement for allosteric stabilization by the Pincer domain.
    Rawling DC; Kohlway AS; Luo D; Ding SC; Pyle AM
    Nucleic Acids Res; 2014 Oct; 42(18):11601-11. PubMed ID: 25217590
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystallization and preliminary crystallographic studies of human RIG-I in complex with double-stranded RNA.
    Moon H; Choe J
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2009 Jun; 65(Pt 6):648-50. PubMed ID: 19478455
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structure of RIG-I C-terminal domain bound to blunt-ended double-strand RNA without 5' triphosphate.
    Lu C; Ranjith-Kumar CT; Hao L; Kao CC; Li P
    Nucleic Acids Res; 2011 Mar; 39(4):1565-75. PubMed ID: 20961956
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.