These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 22020128)

  • 1. Phase transformation and size tuning in controlled-growth of nanocrystals via self-seeded nucleation with preferential thermodynamic stability.
    Yang L; Li Y; Yu S; Hao J; Zhong J; Chu PK
    Chem Commun (Camb); 2011 Dec; 47(46):12544-6. PubMed ID: 22020128
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study on the anatase to rutile phase transformation and controlled synthesis of rutile nanocrystals with the assistance of ionic liquid.
    Ding K; Miao Z; Hu B; An G; Sun Z; Han B; Liu Z
    Langmuir; 2010 Jun; 26(12):10294-302. PubMed ID: 20426393
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shape Control of Colloidal Cu
    van der Stam W; Gradmann S; Altantzis T; Ke X; Baldus M; Bals S; de Mello Donega C
    Chem Mater; 2016 Sep; 28(18):6705-6715. PubMed ID: 27713598
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insights into initial kinetic nucleation of gold nanocrystals.
    Yao T; Sun Z; Li Y; Pan Z; Wei H; Xie Y; Nomura M; Niwa Y; Yan W; Wu Z; Jiang Y; Liu Q; Wei S
    J Am Chem Soc; 2010 Jun; 132(22):7696-701. PubMed ID: 20469856
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shape and size controlled synthesis of anatase nanocrystals with the assistance of ionic liquid.
    Ding K; Miao Z; Hu B; An G; Sun Z; Han B; Liu Z
    Langmuir; 2010 Apr; 26(7):5129-34. PubMed ID: 20030322
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study of nucleation and growth in the organometallic synthesis of magnetic alloy nanocrystals: the role of nucleation rate in size control of CoPt3 nanocrystals.
    Shevchenko EV; Talapin DV; Schnablegger H; Kornowski A; Festin O; Svedlindh P; Haase M; Weller H
    J Am Chem Soc; 2003 Jul; 125(30):9090-101. PubMed ID: 15369366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetics of monodisperse iron oxide nanocrystal formation by "heating-up" process.
    Kwon SG; Piao Y; Park J; Angappane S; Jo Y; Hwang NM; Park JG; Hyeon T
    J Am Chem Soc; 2007 Oct; 129(41):12571-84. PubMed ID: 17887758
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of nanocrystals via microreaction with temperature gradient: towards separation of nucleation and growth.
    Yang H; Luan W; Tu ST; Wang ZM
    Lab Chip; 2008 Mar; 8(3):451-5. PubMed ID: 18305864
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Precisely controlled growth of heterostructured nanocrystals via a dissolution-attachment process.
    Shen S; Tang Z; Liu Q; Wang X
    Inorg Chem; 2010 Sep; 49(17):7799-807. PubMed ID: 20681592
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controlling spatial density and size of nanocrystals by two-step atomic layer deposition.
    Lee DJ; Yim SS; Kim KS; Kim SH; Kim KB
    Nanotechnology; 2011 Mar; 22(9):095305. PubMed ID: 21270488
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Size-dependent phase stability of a molecular nanocrystal: a proxy for investigating the early stages of crystallization.
    Zahn D; Anwar J
    Chemistry; 2011 Sep; 17(40):11186-92. PubMed ID: 21922553
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonhydrolytic synthesis of high-quality anisotropically shaped brookite TiO2 nanocrystals.
    Buonsanti R; Grillo V; Carlino E; Giannini C; Kipp T; Cingolani R; Cozzoli PD
    J Am Chem Soc; 2008 Aug; 130(33):11223-33. PubMed ID: 18646847
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potential of different techniques of preferential crystallization for enantioseparation of racemic compound forming systems.
    Polenske D; Lorenz H; Seidel-Morgenstern A
    Chirality; 2009 Aug; 21(8):728-37. PubMed ID: 18989897
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A general synthesis of high-quality inorganic nanocrystals via a two-phase method.
    Zhao N; Nie W; Mao J; Yang M; Wang D; Lin Y; Fan Y; Zhao Z; Wei H; Ji X
    Small; 2010 Nov; 6(22):2558-65. PubMed ID: 20963794
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Size-controlled aggregation of cube-shaped EuS nanocrystals with magneto-optic properties in solution phase.
    Tanaka A; Kamikubo H; Kataoka M; Hasegawa Y; Kawai T
    Langmuir; 2011 Jan; 27(1):104-8. PubMed ID: 21126046
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-phase and gram-scale routes toward nearly monodisperse Au and other noble metal nanocrystals.
    Jana NR; Peng X
    J Am Chem Soc; 2003 Nov; 125(47):14280-1. PubMed ID: 14624568
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wurtzite-to-rocksalt structural transformation in nanocrystalline CoO.
    Liu JF; Yin S; Wu HP; Zeng YW; Hu XR; Wang YW; Lv GL; Jiang JZ
    J Phys Chem B; 2006 Nov; 110(43):21588-92. PubMed ID: 17064112
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shape, size, and phase-controlled rare-Earth fluoride nanocrystals with optical up-conversion properties.
    Zhang F; Li J; Shan J; Xu L; Zhao D
    Chemistry; 2009 Oct; 15(41):11010-9. PubMed ID: 19739209
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In-situ observation of nucleation and growth of PbSe magic-sized nanoclusters and regular nanocrystals.
    Yu K; Ouyang J; Leek DM
    Small; 2011 Aug; 7(15):2250-62. PubMed ID: 21735546
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation of monodisperse and shape-controlled MnO nanocrystals in non-injection synthesis: self-focusing via ripening.
    Chen Y; Johnson E; Peng X
    J Am Chem Soc; 2007 Sep; 129(35):10937-47. PubMed ID: 17696349
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.