BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 22020220)

  • 1. Simulation of multihaem cytochromes.
    Soares CM; Baptista AM
    FEBS Lett; 2012 Mar; 586(5):510-8. PubMed ID: 22020220
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studies of the reduction and protonation behavior of tetraheme cytochromes using atomic detail.
    Teixeira VH; Soares CM; Baptista AM
    J Biol Inorg Chem; 2002 Jan; 7(1-2):200-16. PubMed ID: 11862556
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of intramolecular interactions in the functional control of multiheme cytochromes c.
    Fonseca BM; Paquete CM; Salgueiro CA; Louro RO
    FEBS Lett; 2012 Mar; 586(5):504-9. PubMed ID: 21856299
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular dynamics simulation of cytochrome c3: studying the reduction processes using free energy calculations.
    Soares CM; Martel PJ; Mendes J; Carrondo MA
    Biophys J; 1998 Apr; 74(4):1708-21. PubMed ID: 9545034
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How cytochromes with different folds control heme redox potentials.
    Mao J; Hauser K; Gunner MR
    Biochemistry; 2003 Aug; 42(33):9829-40. PubMed ID: 12924932
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular interactions between multihaem cytochromes: probing the protein-protein interactions between pentahaem cytochromes of a nitrite reductase complex.
    Lockwood C; Butt JN; Clarke TA; Richardson DJ
    Biochem Soc Trans; 2011 Jan; 39(1):263-8. PubMed ID: 21265785
    [TBL] [Abstract][Full Text] [Related]  

  • 7. pH dependence of heme electrochemistry in cytochromes investigated by multiconformation continuum electrostatic calculations.
    Hauser K; Mao J; Gunner MR
    Biopolymers; 2004 May-Jun 5; 74(1-2):51-4. PubMed ID: 15137093
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The reversible opening of water channels in cytochrome c modulates the heme iron reduction potential.
    Bortolotti CA; Amadei A; Aschi M; Borsari M; Corni S; Sola M; Daidone I
    J Am Chem Soc; 2012 Aug; 134(33):13670-8. PubMed ID: 22873369
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Classical force field parameters for the heme prosthetic group of cytochrome c.
    Autenrieth F; Tajkhorshid E; Baudry J; Luthey-Schulten Z
    J Comput Chem; 2004 Oct; 25(13):1613-22. PubMed ID: 15264255
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coupling between protonation and conformation in cytochrome c oxidase: Insights from constant-pH MD simulations.
    Oliveira AS; Campos SR; Baptista AM; Soares CM
    Biochim Biophys Acta; 2016 Jun; 1857(6):759-71. PubMed ID: 27033303
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular basis for the electric field modulation of cytochrome C structure and function.
    De Biase PM; Paggi DA; Doctorovich F; Hildebrandt P; Estrin DA; Murgida DH; Marti MA
    J Am Chem Soc; 2009 Nov; 131(44):16248-56. PubMed ID: 19886701
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Redox equilibria in hydroxylamine oxidoreductase. Electrostatic control of electron redistribution in multielectron oxidative processes.
    Kurnikov IV; Ratner MA; Pacheco AA
    Biochemistry; 2005 Feb; 44(6):1856-63. PubMed ID: 15697211
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Homotropic and heterotropic interactions in cytochromes c(3) from sulphate reducing bacteria.
    Turner DL; Catarino T
    FEBS Lett; 2012 Mar; 586(5):494-503. PubMed ID: 21763691
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulation of electron-proton coupling with a Monte Carlo method: application to cytochrome c3 using continuum electrostatics.
    Baptista AM; Martel PJ; Soares CM
    Biophys J; 1999 Jun; 76(6):2978-98. PubMed ID: 10354425
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rational design of electron/proton transfer mechanisms in the exoelectrogenic bacteria Geobacter sulfurreducens.
    Silva MA; Portela PC; Salgueiro CA
    Biochem J; 2021 Jul; 478(14):2871-2887. PubMed ID: 34190983
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular basis for redox-Bohr and cooperative effects in cytochrome c3 from Desulfovibrio desulfuricans ATCC 27774: crystallographic and modeling studies of oxidized and reduced high-resolution structures at pH 7.6.
    Bento I; Matias PM; Baptista AM; da Costa PN; van Dongen WM; Saraiva LM; Schneider TR; Soares CM; Carrondo MA
    Proteins; 2004 Jan; 54(1):135-52. PubMed ID: 14705030
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Redox properties of cytochrome c: novel linear response and hybrid continuum-microscopic methodologies.
    Simonson T
    Pac Symp Biocomput; 1997; ():421-31. PubMed ID: 9390311
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermodynamic investigation into the mechanisms of proton-coupled electron transfer events in heme protein maquettes.
    Reddi AR; Reedy CJ; Mui S; Gibney BR
    Biochemistry; 2007 Jan; 46(1):291-305. PubMed ID: 17198400
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of low oxidoreduction potential cytochrome c553 from Desulfovibrio vulgaris with the class I cytochrome c family.
    Blackledge MJ; Guerlesquin F; Marion D
    Proteins; 1996 Feb; 24(2):178-94. PubMed ID: 8820485
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular dynamics simulations of peptides and proteins with a continuum electrostatic model based on screened Coulomb potentials.
    Hassan SA; Mehler EL; Zhang D; Weinstein H
    Proteins; 2003 Apr; 51(1):109-25. PubMed ID: 12596268
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.