BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 22020272)

  • 1. Surface oxidation study of single wall carbon nanotubes.
    Lebrón-Colón M; Meador MA; Lukco D; Solá F; Santos-Pérez J; McCorkle LS
    Nanotechnology; 2011 Nov; 22(45):455707. PubMed ID: 22020272
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of functionalization on thermal properties of single-wall and multi-wall carbon nanotube-polymer nanocomposites.
    Gulotty R; Castellino M; Jagdale P; Tagliaferro A; Balandin AA
    ACS Nano; 2013 Jun; 7(6):5114-21. PubMed ID: 23672711
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Noncovalent functionalization as an alternative to oxidative acid treatment of single wall carbon nanotubes with applications for polymer composites.
    Simmons TJ; Bult J; Hashim DP; Linhardt RJ; Ajayan PM
    ACS Nano; 2009 Apr; 3(4):865-70. PubMed ID: 19334688
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of acid functionalization on the cardiopulmonary toxicity of carbon nanotubes and carbon black particles in mice.
    Tong H; McGee JK; Saxena RK; Kodavanti UP; Devlin RB; Gilmour MI
    Toxicol Appl Pharmacol; 2009 Sep; 239(3):224-32. PubMed ID: 19481103
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensing properties of polyethylenimine coated carbon nanotubes in oxidized oil.
    Fai VL; Lee YD; Lee K; Lee KS; Ham DJ; Ju BK
    Talanta; 2011 Jul; 85(1):463-8. PubMed ID: 21645726
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reactive bonding mediated high mass loading of individualized single-walled carbon nanotubes in an elastomeric polymer.
    Zhao L; Li Y; Qiu J; You J; Dong W; Cao X
    Nanoscale; 2012 Oct; 4(20):6613-21. PubMed ID: 22976380
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon nanotube epoxy nanocomposites: the effects of interfacial modifications on the dynamic mechanical properties of the nanocomposites.
    Yoonessi M; Lebrón-Colón M; Scheiman D; Meador MA
    ACS Appl Mater Interfaces; 2014 Oct; 6(19):16621-30. PubMed ID: 25215892
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular dynamics analysis on buckling of defective carbon nanotubes.
    Kulathunga DD; Ang KK; Reddy JN
    J Phys Condens Matter; 2010 Sep; 22(34):345301. PubMed ID: 21403253
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Derivatization of single-walled carbon nanotubes with redox mediator for biocatalytic oxygen electrodes.
    Sadowska K; Stolarczyk K; Biernat JF; Roberts KP; Rogalski J; Bilewicz R
    Bioelectrochemistry; 2010 Nov; 80(1):73-80. PubMed ID: 20609634
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction of acetone with single wall carbon nanotubes at cryogenic temperatures: a combined temperature programmed desorption and theoretical study.
    Kazachkin D; Nishimura Y; Irle S; Morokuma K; Vidic RD; Borguet E
    Langmuir; 2008 Aug; 24(15):7848-56. PubMed ID: 18613702
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparative study of argon ion irradiated pristine and fluorinated single-wall carbon nanotubes.
    Fedoseeva YV; Bulusheva LG; Okotrub AV; Vyalikh DV; Fonseca A
    J Chem Phys; 2010 Dec; 133(22):224706. PubMed ID: 21171695
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Layer-by-layer fabrication and characterization of DNA-wrapped single-walled carbon nanotube particles.
    He P; Bayachou M
    Langmuir; 2005 Jun; 21(13):6086-92. PubMed ID: 15952864
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modified SWCNTs with amphoteric redox and solubilizing properties.
    Rodríguez-Pérez L; García R; Herranz MÁ; Martín N
    Chemistry; 2014 Jun; 20(24):7278-86. PubMed ID: 24838774
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-walled carbon nanotubes dispersed in aqueous media via non-covalent functionalization: effect of dispersant on the stability, cytotoxicity, and epigenetic toxicity of nanotube suspensions.
    Alpatova AL; Shan W; Babica P; Upham BL; Rogensues AR; Masten SJ; Drown E; Mohanty AK; Alocilja EC; Tarabara VV
    Water Res; 2010 Jan; 44(2):505-20. PubMed ID: 19945136
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antioxidant single-walled carbon nanotubes.
    Lucente-Schultz RM; Moore VC; Leonard AD; Price BK; Kosynkin DV; Lu M; Partha R; Conyers JL; Tour JM
    J Am Chem Soc; 2009 Mar; 131(11):3934-41. PubMed ID: 19243186
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct attachment of well-aligned single-walled carbon nanotube architectures to silicon (100) surfaces: a simple approach for device assembly.
    Yu J; Shapter JG; Quinton JS; Johnston MR; Beattie DA
    Phys Chem Chem Phys; 2007 Jan; 9(4):510-20. PubMed ID: 17216067
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct measurements of interactions between polypeptides and carbon nanotubes.
    Li X; Chen W; Zhan Q; Dai L; Sowards L; Pender M; Naik RR
    J Phys Chem B; 2006 Jun; 110(25):12621-5. PubMed ID: 16800593
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High volume fraction carbon nanotube-epoxy composites.
    Spitalsky Z; Tsoukleri G; Tasis D; Krontiras C; Georga SN; Galiotis C
    Nanotechnology; 2009 Oct; 20(40):405702. PubMed ID: 19738313
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modification of the surface chemistry of single- and multi-walled carbon nanotubes by HNO3 and H2SO4 hydrothermal oxidation for application in direct contact membrane distillation.
    Morales-Torres S; Silva TL; Pastrana-Martínez LM; Brandão AT; Figueiredo JL; Silva AM
    Phys Chem Chem Phys; 2014 Jun; 16(24):12237-50. PubMed ID: 24821484
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly organized two- and three-dimensional single-walled carbon nanotube-polymer hybrid architectures.
    Li B; Hahm MG; Kim YL; Jung HY; Kar S; Jung YJ
    ACS Nano; 2011 Jun; 5(6):4826-34. PubMed ID: 21609004
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.