These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 22020483)

  • 1. Cascade vulnerability for risk analysis of water infrastructure.
    Sitzenfrei R; Mair M; Möderl M; Rauch W
    Water Sci Technol; 2011; 64(9):1885-91. PubMed ID: 22020483
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A socio-technical model to explore urban water systems scenarios.
    de Haan FJ; Ferguson BC; Deletic A; Brown RR
    Water Sci Technol; 2013; 68(3):714-21. PubMed ID: 23925202
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identifying weak points of urban drainage systems by means of VulNetUD.
    Möderl M; Kleidorfer M; Sitzenfrei R; Rauch W
    Water Sci Technol; 2009; 60(10):2507-13. PubMed ID: 19923755
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification and quantification of the hydrological impacts of imperviousness in urban catchments: a review.
    Jacobson CR
    J Environ Manage; 2011 Jun; 92(6):1438-48. PubMed ID: 21334133
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mapping hazard from urban non-point pollution: a screening model to support sustainable urban drainage planning.
    Mitchell G
    J Environ Manage; 2005 Jan; 74(1):1-9. PubMed ID: 15572076
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impacts of climate change on rainfall extremes and urban drainage systems: a review.
    Arnbjerg-Nielsen K; Willems P; Olsson J; Beecham S; Pathirana A; Bülow Gregersen I; Madsen H; Nguyen VT
    Water Sci Technol; 2013; 68(1):16-28. PubMed ID: 23823535
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combining multimedia models with integrated urban water system models for micropollutants.
    De Keyser W; Gevaert V; Verdonck F; Nopens I; De Baets B; Vanrolleghem PA; Mikkelsen PS; Benedetti L
    Water Sci Technol; 2010; 62(7):1614-22. PubMed ID: 20935380
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Past, present, and future design of urban drainage systems with focus on Danish experiences.
    Arnbjerg-Nielsen K
    Water Sci Technol; 2011; 63(3):527-35. PubMed ID: 21278476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Indicators of hazard, vulnerability and risk in urban drainage.
    Hauger MB; Mouchel JM; Mikkelsen PS
    Water Sci Technol; 2006; 54(6-7):441-50. PubMed ID: 17120679
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regional planning for the siting of local evaporation basins for the disposal of saline irrigation drainage: development and testing of a GIS-based suitability approach.
    Jolly ID; Walker GR; Dowling TI; Christen EW; Murray E
    J Environ Manage; 2001 Sep; 63(1):51-70. PubMed ID: 11591030
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Urban drainage redefined: from stormwater removal to integrated management.
    Chocat B; Krebs P; Marsalek J; Rauch W; Schilling W
    Water Sci Technol; 2001; 43(5):61-8. PubMed ID: 11379157
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probabilistic modelling of overflow, surcharge and flooding in urban drainage using the first-order reliability method and parameterization of local rain series.
    Thorndahl S; Willems P
    Water Res; 2008 Jan; 42(1-2):455-66. PubMed ID: 17719076
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A global analysis approach for investigating structural resilience in urban drainage systems.
    Mugume SN; Gomez DE; Fu G; Farmani R; Butler D
    Water Res; 2015 Sep; 81():15-26. PubMed ID: 26024960
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessing equitable access to urban green space: the role of engineered water infrastructure.
    Wendel HE; Downs JA; Mihelcic JR
    Environ Sci Technol; 2011 Aug; 45(16):6728-34. PubMed ID: 21728276
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reliability of groundwater vulnerability maps obtained through statistical methods.
    Sorichetta A; Masetti M; Ballabio C; Sterlacchini S; Beretta GP
    J Environ Manage; 2011 Apr; 92(4):1215-24. PubMed ID: 21208723
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Emission standards versus immission standards for assessing the impact of urban drainage on ephemeral receiving water bodies.
    Freni G; Mannina G; Viviani G
    Water Sci Technol; 2010; 61(6):1617-29. PubMed ID: 20351441
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Defining urban diffuse pollution loadings and receiving water hazard.
    Ellis JB; Revitt DM
    Water Sci Technol; 2008; 57(11):1817-23. PubMed ID: 18547936
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Road de-icing salt as a potential constraint on urban growth in the Greater Toronto Area, Canada.
    Howard KW; Maier H
    J Contam Hydrol; 2007 Apr; 91(1-2):146-70. PubMed ID: 17166621
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Groundwater risk assessment at a heavily industrialised catchment and the associated impacts on a peri-urban wetland.
    Dimitriou E; Karaouzas I; Sarantakos K; Zacharias I; Bogdanos K; Diapoulis A
    J Environ Manage; 2008 Aug; 88(3):526-38. PubMed ID: 17499908
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Urban water quality modelling: a parsimonious holistic approach for a complex real case study.
    Freni G; Mannina G; Viviani G
    Water Sci Technol; 2010; 61(2):521-36. PubMed ID: 20107280
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.